parasite stage
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 14)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 9 (11) ◽  
pp. 2346
Author(s):  
Gema Álvarez García ◽  
Rebecca Davidson ◽  
Pikka Jokelainen ◽  
Siv Klevar ◽  
Furio Spano ◽  
...  

The apicomplexan zoonotic parasite Toxoplasma gondii has three infective stages: sporozoites in sporulated oocysts, which are shed in unsporulated form into the environment by infected felids; tissue cysts containing bradyzoites, and fast replicating tachyzoites that are responsible for acute toxoplasmosis. The contribution of oocysts to infections in both humans and animals is understudied despite being highly relevant. Only a few diagnostic antigens have been described to be capable of discriminating which parasite stage has caused an infection. Here we provide an extensive overview of the antigens and serological assays used to detect oocyst-driven infections in humans and animals according to the literature. In addition, we critically discuss the possibility to exploit the increasing knowledge of the T. gondii genome and the various ‘omics datasets available, by applying predictive algorithms, for the identification of new oocyst-specific proteins for diagnostic purposes. Finally, we propose a workflow for how such antigens and assays based on them should be evaluated to ensure reproducible and robust results.


2021 ◽  
Author(s):  
Visnu Chaparro ◽  
Tyson E. Graber ◽  
Tommy Alain ◽  
Maritza Jaramillo

Abstract Macrophages undergo swift changes in mRNA abundance upon pathogen invasion. Herein we describe early remodelling of the macrophage transcriptome during infection by amastigotes or promastigotes of Leishmania donovani. Approximately 10% - 16% of host mRNAs were differentially modulated in L. donovani-infected macrophages when compared to uninfected controls. This response was partially stage-specific as a third of changes in mRNA abundance were either exclusively driven by one of the parasite forms or significantly different between them. Gene ontology analyses identified categories associated with immune functions (e.g. antigen presentation and leukocyte activation) among significantly downregulated mRNAs while cytoprotective-related categories (e.g. DNA repair and apoptosis inhibition) were enriched in upregulated transcripts during amastigote infection. Interestingly a combination of upregulated (e.g. cellular response to IFNβ) and repressed (e.g. leukocyte activation, chemotaxis) immune-related transcripts were overrepresented in the promastigote-infected dataset. In addition, Ingenuity Pathway Analysis (IPA®) coupled specific mRNA subsets with a number of upstream transcriptional regulators predicted to be modulated in macrophages infected with L. donovani amastigotes (e.g. STAT1 inhibition) or promastigotes (e.g. NRF2, IRF3, and IRF7 activation). Overall, our results indicate that early parasite stage-driven transcriptional remodelling in macrophages contributes to orchestrate both protective and deleterious host cell responses during L. donovani infection.


2021 ◽  
Vol 75 (1) ◽  
Author(s):  
Carola Schäfer ◽  
Gigliola Zanghi ◽  
Ashley M. Vaughan ◽  
Stefan H.I. Kappe

Plasmodium vivax is the most widespread human malaria parasite, in part because it can form latent liver stages known as hypnozoites after transmission by female anopheline mosquitoes to human hosts. These persistent stages can activate weeks, months, or even years after the primary clinical infection; replicate; and initiate relapses of blood stage infection, which causes disease and recurring transmission. Eliminating hypnozoites is a substantial obstacle for malaria treatment and eradication since the hypnozoite reservoir is undetectable and unaffected by most antimalarial drugs. Importantly, in some parts of the globe where P. vivax malaria is endemic, as many as 90% of P. vivax blood stage infections are thought to be relapses rather than primary infections, rendering the hypnozoite a major driver of P. vivax epidemiology. Here, we review the biology of the hypnozoite and recent discoveries concerning this enigmatic parasite stage. We discuss treatment and prevention challenges, novel animal models to study hypnozoites and relapse, and hypotheses related to hypnozoite formation and activation. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Luis Carlos Salazar Alvarez ◽  
Omaira Vera Lizcano ◽  
Dayanne Kamylla Alves da Silva Barros ◽  
Djane Clarys Baia-da-Silva ◽  
Wuelton Marcelo Monteiro ◽  
...  

In a Plasmodium vivax infection, it was shown a proportionally increased on gametocyte distribution within the bone marrow aspirant, suggesting a role of this organ as a reservoir for this parasite stage. Here, we evaluated the ex vivo cytoadhesive capacity of P. vivax gametocytes to bone marrow endothelial cells (HBMEC) and investigated the involvement of some receptors in the cytoadhesion process by using transfected CHO cells (CHO-ICAM1, CHO-CD36 and CHO-VCAM), wild type (CHO-K1) or deficient in heparan and chondroitin sulfate (CHO-745). Ex-vivo cytoadhesion assays were performed using a total of 44 P. vivax isolates enriched in gametocyte stages by Percoll gradient in the different cell lines. The majority of isolates (88.9%) were able to adhere to HBMEC monolayer. ICAM1 seemed to be the sole receptor significantly involved. CD-36 was the receptor with higher adhesion rate, despite no significance was noticed when compared to CHO-745. We demonstrated that gametocyte P. vivax adheres ex vivo to bone marrow endothelial cells. Moreover, P. vivax gametocytes display the ability to adhere to all CHO cells investigated, especially to CHO-ICAM1. These findings bring insights to the comprehension of the role of the bone marrow as a P. vivax reservoir and the potential impact on parasite transmission to the vector.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lauren M. Cohee ◽  
Clarissa Valim ◽  
Jenna E. Coalson ◽  
Andrew Nyambalo ◽  
Moses Chilombe ◽  
...  

AbstractIn areas where malaria remains entrenched, novel transmission-reducing interventions are essential for malaria elimination. We report the impact screening-and-treatment of asymptomatic Malawian schoolchildren (n = 364 in the rainy season and 341 in the dry season) had on gametocyte—the parasite stage responsible for human-to-mosquito transmission—carriage. We used concomitant household-based surveys to predict the potential reduction in transmission in the surrounding community. Among 253 students with P. falciparum infections at screening, 179 (71%) had infections containing gametocytes detected by Pfs25 qRT-PCR. 84% of gametocyte-containing infections were detected by malaria rapid diagnostic test. While the gametocyte prevalence remained constant in untreated children, treatment with artemether-lumefantrine reduced the gametocyte prevalence (p < 0.0001) from 51.8 to 9.7% and geometric mean gametocyte density (p = 0.008) from 0.52 to 0.05 gametocytes/microliter. In community surveys, 46% of all gametocyte-containing infections were in school-age children, who comprised only 35% of the population. Based on these estimates six weeks after the intervention, the gametocyte burden in the community could be reduced by 25–55% depending on the season and the measure used to characterize gametocyte carriage. Thus, school-based interventions to treat asymptomatic infections may be a high-yield approach to not only improve the health of schoolchildren, but also decrease malaria transmission.


2021 ◽  
Vol 15 (3) ◽  
pp. e0009269
Author(s):  
Andrea Vela ◽  
Marco Coral-Almeida ◽  
Denis Sereno ◽  
Jaime A. Costales ◽  
Christian Barnabé ◽  
...  

Background Chagas disease, a neglected tropical disease endemic to Latin America caused by the parasite Trypanosoma cruzi, currently affects 6–7 million people and is responsible for 12,500 deaths each year. No vaccine exists at present and the only two drugs currently approved for the treatment (benznidazole and nifurtimox), possess serious limitations, including long treatment regimes, undesirable side effects, and frequent clinical failures. A link between parasite genetic variability and drug sensibility/efficacy has been suggested, but remains unclear. Therefore, we investigated associations between T. cruzi genetic variability and in vitro benznidazole susceptibility via a systematic article review and meta-analysis. Methodology/Principal findings In vitro normalized benznidazole susceptibility indices (LC50 and IC50) for epimastigote, trypomastigote and amastigote stages of different T. cruzi strains were recorded from articles in the scientific literature. A total of 60 articles, which include 189 assays, met the selection criteria for the meta-analysis. Mean values for each discrete typing unit (DTU) were estimated using the meta and metaphor packages through R software, and presented in a rainforest plot. Subsequently, a meta-regression analysis was performed to determine differences between estimated mean values by DTU/parasite stage/drug incubation times. For each parasite stage, some DTU mean values were significantly different, e.g. at 24h of drug incubation, a lower sensitivity to benznidazole of TcI vs. TcII trypomastigotes was noteworthy. Nevertheless, funnel plots detected high heterogeneity of the data within each DTU and even for a single strain. Conclusions/Significance Several limitations of the study prevent assigning DTUs to different in vitro benznidazole sensitivity groups; however, ignoring the parasite’s genetic variability during drug development and evaluation would not be advisable. Our findings highlight the need for establishment of uniform experimental conditions as well as a screening of different DTUs during the optimization of new drug candidates for Chagas disease treatment.


2020 ◽  
Author(s):  
Lauren M. Cohee ◽  
Clarissa Valim ◽  
Jenna E. Coalson ◽  
Andrew Nyambalo ◽  
Moses Chilombe ◽  
...  

AbstractIn areas where malaria remains entrenched, novel transmission-reducing interventions are essential for malaria elimination. We report the impact of screening-and-treatment of asymptomatic schoolchildren (N=705) on gametocyte - the parasite stage responsible for human-to-mosquito transmission - carriage and use concomitant household-based surveys to predict the potential reduction in transmission in the surrounding community. Among 179 students with gametocyte-containing infections, 84% had positive malaria rapid diagnostic tests. While gametocyte burden remained constant in untreated children, treatment with artemether-lumefantrine reduced the gametocyte prevalence (p<0.0001) from 51.8% to 9.7% and geometric mean gametocyte density (p=0.008) from 0.52 to 0.05 gametocytes/microliter. Based on these estimates, the gametocyte burden in the community could be reduced by 25-55% depending on the season and the measure used to characterize gametocyte carriage. Thus, school-based interventions to treat asymptomatic infections may be a high-yield approach to not only improve the health and education of schoolchildren, but also decrease malaria transmission.


2020 ◽  
Author(s):  
Maren Preuss ◽  
Giuseppe Zuccarello

© 2019, © 2019 British Phycological Society. Parasitic red algae grow only on other red algae and have over 120 described species. Developmental studies in red algal parasites are few, although they have shown that secondary pit connections formed between parasite and host and proposed that this was an important process in successful parasitism. Furthermore, it was recorded that the transfer of parasite nuclei by these secondary pit connections led to different host cell effects. We used developmental studies to reconstruct early stages and any host cell effects of a parasite on Vertebrata aterrima. A mitochondrial marker (cox1) and morphological observations (light and fluorescence microscopy) were used to describe this new red algal parasite as Vertebrata aterrimophila sp. nov. Early developmental stages show that a parasite spore connects via secondary pit connections with a pericentral host cell after cuticle penetration. Developmental observations revealed a unique connection cell that grows into a ‘trunk-like’ structure. Host cell transformation after infection by the parasite included apparent increases in both carbohydrate concentrations and nuclear size, as well as structural changes. Analyses of molecular phylogenies and reproductive structures indicated that the closest relative of V. aterrimophila is its host, V. aterrima. Our study shows a novel developmental parasite stage (‘trunk-like’ cell) and highlights the need for further developmental studies to investigate the range of developmental patterns and host effects in parasitic red algae.


2020 ◽  
Author(s):  
Maren Preuss ◽  
Giuseppe Zuccarello

© 2019, © 2019 British Phycological Society. Parasitic red algae grow only on other red algae and have over 120 described species. Developmental studies in red algal parasites are few, although they have shown that secondary pit connections formed between parasite and host and proposed that this was an important process in successful parasitism. Furthermore, it was recorded that the transfer of parasite nuclei by these secondary pit connections led to different host cell effects. We used developmental studies to reconstruct early stages and any host cell effects of a parasite on Vertebrata aterrima. A mitochondrial marker (cox1) and morphological observations (light and fluorescence microscopy) were used to describe this new red algal parasite as Vertebrata aterrimophila sp. nov. Early developmental stages show that a parasite spore connects via secondary pit connections with a pericentral host cell after cuticle penetration. Developmental observations revealed a unique connection cell that grows into a ‘trunk-like’ structure. Host cell transformation after infection by the parasite included apparent increases in both carbohydrate concentrations and nuclear size, as well as structural changes. Analyses of molecular phylogenies and reproductive structures indicated that the closest relative of V. aterrimophila is its host, V. aterrima. Our study shows a novel developmental parasite stage (‘trunk-like’ cell) and highlights the need for further developmental studies to investigate the range of developmental patterns and host effects in parasitic red algae.


2020 ◽  
Vol 14 (3) ◽  
pp. e0008014 ◽  
Author(s):  
Iliano V. Coutinho-Abreu ◽  
Tiago D. Serafim ◽  
Claudio Meneses ◽  
Shaden Kamhawi ◽  
Fabiano Oliveira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document