Study of Moving Distance of Ricocheted Debris for Various Medium with Air Drag Force Coefficient

2020 ◽  
Vol 37 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Yoon Keon Kim ◽  
Woo Chun Choi
2012 ◽  
Vol 28 (3) ◽  
pp. 317-323 ◽  
Author(s):  
Vincent Chabroux ◽  
Caroline Barelle ◽  
Daniel Favier

The present work is focused on the aerodynamic study of different parameters, including both the posture of a cyclist’s upper limbs and the saddle position, in time trial (TT) stages. The aerodynamic influence of a TT helmet large visor is also quantified as a function of the helmet inclination. Experiments conducted in a wind tunnel on nine professional cyclists provided drag force and frontal area measurements to determine the drag force coefficient. Data statistical analysis clearly shows that the hands positioning on shifters and the elbows joined together are significantly reducing the cyclist drag force. Concerning the saddle position, the drag force is shown to be significantly increased (about 3%) when the saddle is raised. The usual helmet inclination appears to be the inclination value minimizing the drag force. Moreover, the addition of a large visor on the helmet is shown to provide a drag coefficient reduction as a function of the helmet inclination. Present results indicate that variations in the TT cyclist posture, the saddle position and the helmet visor can produce a significant gain in time (up to 2.2%) during stages.


2015 ◽  
Vol 782 ◽  
pp. 300-332 ◽  
Author(s):  
Fangfang Xie ◽  
Yue Yu ◽  
Yiannis Constantinides ◽  
Michael S. Triantafyllou ◽  
George Em Karniadakis

We employ three-dimensional direct and large-eddy numerical simulations of the vibrations and flow past cylinders fitted with free-to-rotate U-shaped fairings placed in a cross-flow at Reynolds number $100\leqslant \mathit{Re}\leqslant 10\,000$. Such fairings are nearly neutrally buoyant devices fitted along the axis of long circular risers to suppress vortex-induced vibrations (VIVs). We consider three different geometric configurations: a homogeneous fairing, and two configurations (denoted A and AB) involving a gap between adjacent segments. For the latter two cases, we investigate the effect of the gap on the hydrodynamic force coefficients and the translational and rotational motions of the system. For all configurations, as the Reynolds number increases beyond 500, both the lift and drag coefficients decrease. Compared to a plain cylinder, a homogeneous fairing system (no gaps) can help reduce the drag force coefficient by 15 % for reduced velocity $U^{\ast }=4.65$, while a type A gap system can reduce the drag force coefficient by almost 50 % for reduced velocity $U^{\ast }=3.5,4.65,6$, and, correspondingly, the vibration response of the combined system, as well as the fairing rotation amplitude, are substantially reduced. For a homogeneous fairing, the cross-flow amplitude is reduced by about 80 %, whereas for fairings with a gap longer than half a cylinder diameter, VIVs are completely eliminated, resulting in additional reduction in the drag coefficient. We have related such VIV suppression or elimination to the features of the wake flow structure. We find that a gap causes the generation of strong streamwise vorticity in the gap region that interferes destructively with the vorticity generated by the fairings, hence disorganizing the formation of coherent spanwise cortical patterns. We provide visualization of the incoherent wake flow that leads to total elimination of the vibration and rotation of the fairing–cylinder system. Finally, we investigate the effect of the friction coefficient between cylinder and fairing. The effect overall is small, even when the friction coefficients of adjacent segments are different. In some cases the equilibrium positions of the fairings are rotated by a small angle on either side of the centreline, in a symmetry-breaking bifurcation, which depends strongly on Reynolds number.


2016 ◽  
Vol 126 ◽  
pp. 1-11 ◽  
Author(s):  
Leijian Song ◽  
Shixiao Fu ◽  
Siyu Dai ◽  
Mengmeng Zhang ◽  
Yifan Chen

2018 ◽  
Vol 847 ◽  
pp. 786-820 ◽  
Author(s):  
Methma M. Rajamuni ◽  
Mark C. Thompson ◽  
Kerry Hourigan

The effects of transverse rotation on the vortex-induced vibration (VIV) of a sphere in a uniform flow are investigated numerically. The one degree-of-freedom sphere motion is constrained to the cross-stream direction, with the rotation axis orthogonal to flow and vibration directions. For the current simulations, the Reynolds number of the flow, $Re=UD/\unicode[STIX]{x1D708}$, and the mass ratio of the sphere, $m^{\ast }=\unicode[STIX]{x1D70C}_{s}/\unicode[STIX]{x1D70C}_{f}$, were fixed at 300 and 2.865, respectively, while the reduced velocity of the flow was varied over the range $3.5\leqslant U^{\ast }~(\equiv U/(f_{n}D))\leqslant 11$, where, $U$ is the upstream velocity of the flow, $D$ is the sphere diameter, $\unicode[STIX]{x1D708}$ is the fluid viscosity, $f_{n}$ is the system natural frequency and $\unicode[STIX]{x1D70C}_{s}$ and $\unicode[STIX]{x1D70C}_{f}$ are solid and fluid densities, respectively. The effect of sphere rotation on VIV was studied over a wide range of non-dimensional rotation rates: $0\leqslant \unicode[STIX]{x1D6FC}~(\equiv \unicode[STIX]{x1D714}D/(2U))\leqslant 2.5$, with $\unicode[STIX]{x1D714}$ the angular velocity. The flow satisfied the incompressible Navier–Stokes equations while the coupled sphere motion was modelled by a spring–mass–damper system, under zero damping. For zero rotation, the sphere oscillated symmetrically through its initial position with a maximum amplitude of approximately 0.4 diameters. Under forced rotation, it oscillated about a new time-mean position. Rotation also resulted in a decreased oscillation amplitude and a narrowed synchronisation range. VIV was suppressed completely for $\unicode[STIX]{x1D6FC}>1.3$. Within the $U^{\ast }$ synchronisation range for each rotation rate, the drag force coefficient increased while the lift force coefficient decreased from their respective pre-oscillatory values. The increment of the drag force coefficient and the decrement of the lift force coefficient reduced with increasing reduced velocity as well as with increasing rotation rate. In terms of wake dynamics, in the synchronisation range at zero rotation, two equal-strength trails of interlaced hairpin-type vortex loops were formed behind the sphere. Under rotation, the streamwise vorticity trail on the advancing side of the sphere became stronger than the trail in the retreating side, consistent with wake deflection due to the Magnus effect. This symmetry breaking appears to be associated with the reduction in the observed amplitude response and the narrowing of the synchronisation range. In terms of variation with Reynolds number, the sphere oscillation amplitude was found to increase over the range $Re\in [300,1200]$ at $U^{\ast }=6$ for each of $\unicode[STIX]{x1D6FC}=0.15$, 0.75 and 1.5. The VIV response depends strongly on Reynolds number, with predictions indicating that VIV will persist for higher rotation rates at higher Reynolds numbers.


Mechanik ◽  
2017 ◽  
Vol 90 (7) ◽  
pp. 591-593
Author(s):  
Leszek Baranowski ◽  
Michał Frant

The article presents the methodology of determining the basic aerodynamic characteristics using the Fluent theoretical method and the theoretical and experimental method using the Prodas program. Presented calculations were made for a 122 mm non-guided missile. In order to compare both methods, the results of calculations of coefficient of drag force, lift force coefficient and pitching moment coefficient as a function of incidence angle of attack and Mach number are shown in graphs.


2016 ◽  
Vol 86 (20) ◽  
pp. 2140-2150 ◽  
Author(s):  
Shuai Liu ◽  
Zhihua Feng ◽  
Deqi Liu ◽  
Xiaofei Zhang ◽  
Liang Zhang

In this paper, non-thermal plasma induced by dielectric barrier discharge (DBD) air discharging was used to treat the moving polyethylene terephthalate (PET) yarn samples and the motionless samples, respectively. The air drag force of the resultant samples was tested, and their surface characteristics were analyzed by X-ray photoelectron spectroscopy (XPS) for chemical composition and by scanning electron microscopy (SEM) for microscopic morphology. The results of the drag force of the samples indicated that, compared with the pristine yarn, the drag force of the samples treated via the two types of plasma treatment clearly varied under different processing conditions. The maximal drag force was 28.26cN for the moving sample treated at 34 V control voltage for 30 s in the discharge zone (zone A) and 27.81cN for the motionless sample treated at 36 V control voltage for 60 s in the long-lived plasma species treating zone (zone B), which increased by 18.9% and 17.0% over that of untreated sample (23.77cN), respectively. The fluctuation of the drag force probably depends on the change of the chemical composition and microstructure of the polyethylene terephthalate yarn surface, which implies that the feasibility of weaving efficiency improvement for an air-jet loom could be realized via controlling and optimizing the dielectric barrier discharge operating conditions.


2013 ◽  
Vol 275-277 ◽  
pp. 567-571
Author(s):  
Zhu Hui ◽  
Zhi Gang Yang

The numerical investigations presented in this paper deal with wind tunnel testing scheme design for 1/4 scaled MIRA model including supporting system. Based on the structure of aerodynamic and aero-acoustic full scale wind tunnel, using computational fluid dynamics (CFD), focus on MIRA model and supporting system, the drag force of scaled models and supporting system were calculated. By comparing with the wind tunnel testing results and drag force coefficient of reference, it is certain that the wind tunnel testing scheme is available and effective and that the value calculated by CFD is in good agreement with experiments.


Sign in / Sign up

Export Citation Format

Share Document