Finite-Time Sliding Mode Controller Design for Formation Control of Multi-Agent Mobile Robots

2017 ◽  
Vol 12 (3) ◽  
pp. 339-349
Author(s):  
Dong-Ju Park ◽  
◽  
Jeong-Whan Moon ◽  
Seong-Ik Han
2018 ◽  
Vol 160 ◽  
pp. 06003
Author(s):  
Baofang Wang ◽  
Chen Qian ◽  
Qingwei Chen

A dynamics controller design method based on characteristic model is proposed for the formation control problem of car-like mobile robots. Only kinematics controller is not enough for some cases such as the environment is rugged, and the dynamics parameters of the robot are time-varying. Simulation results show that the proposed method can improve the responding speed of the mobile robots and maintain high formation accuracy. First, we obtain the kinematic error state equations according to the leader-follower method. A kinematics controller is designed and the stability is proved by Lyapunov theory. Then the characteristic model of the dynamics inner loop is established. A sliding mode controller is designed based on the second order discrete model, and the stability of the closed-loop system is analyzed. Finally, simulations are designed in MATLAB and Microsoft Robotics Developer Studio 4 (MRDS) to verify the effectiveness of the proposed method.


Robotica ◽  
2019 ◽  
Vol 38 (11) ◽  
pp. 1984-2000 ◽  
Author(s):  
Bilal M. Yousuf ◽  
Abdul Saboor Khan ◽  
Aqib Noor

SUMMARYThis paper deals with the problem of the formation control of nonholonomic mobile robots in the leader–follower scenario without considering the leader information, as a result of its velocity and position. The kinematic model is reformulated as a formation model by incorporating the model uncertainties and external disturbance. The controller is presented in the two-step process. Firstly, the tracking problem is taken into consideration, which can be used as a platform to design a controller for the multi-agents. The proposed controller is designed based on a non-singular fast terminal sliding mode controller (FTSMC), which drives the tracking error to zero in finite time. It not only ensures the tracking but also handles the problem related to non-singularities. Moreover, the design control scheme is modified using high-gain observer to resolve the undefined fluctuations due to man-made errors in sensors. Secondly, the multi-agent tracking problem is considered; hence, a novel formation control is designed using FTSMC, which ensures the formation pattern as well as tracking. Furthermore, the obstacle avoidance algorithm is incorporated to avoid the collision, inside the region of interest. With the Lyapunov analysis, the stability of the proposed algorithm is verified. As a result, simulated graphs are shown to prove the efficacy of the proposed control scheme.


Sign in / Sign up

Export Citation Format

Share Document