scholarly journals The effect of curing conditions on the mechanical properties of SIFCON

2021 ◽  
Vol 20 (1) ◽  
pp. 37-51
Author(s):  
Kubilay Akçaözoğlu ◽  
◽  
Adem Kıllı ◽  

In this study, the effect of curing conditions on the mechanical properties of slurry infiltrated fiber reinforced concrete (SIFCON) was investigated. For this purpose, SIFCON samples containing 4% and 8% steel fiber with two different aspect ratios were produced. The samples were subjected to three different curing types, namely standard, dry and accelerated curing methods. Ultrasonic wave velocity, flexural strength, fracture toughness, compressive strength, impact resistance and capillary water absorption tests were performed on the samples. The highest flexural strength was found to be achieved in the samples with an aspect ratio of 55 and a content of 8% steel fiber. The most suitable curing method was determined as the standard curing method and the best flexural strength was achieved at the rate of 8%. According to the test results, the best strength properties were achieved in the samples exposed to the standard curing method. In addition, the samples exposed to the accelerated curing method showed satisfactory values. The accelerated curing method can be used as an alternative in SIFCON production especially in applications requiring mass production.

2021 ◽  
Vol 2 (3) ◽  
pp. 501-515
Author(s):  
Rajib Kumar Biswas ◽  
Farabi Bin Ahmed ◽  
Md. Ehsanul Haque ◽  
Afra Anam Provasha ◽  
Zahid Hasan ◽  
...  

Steel fibers and their aspect ratios are important parameters that have significant influence on the mechanical properties of ultrahigh-performance fiber-reinforced concrete (UHPFRC). Steel fiber dosage also significantly contributes to the initial manufacturing cost of UHPFRC. This study presents a comprehensive literature review of the effects of steel fiber percentages and aspect ratios on the setting time, workability, and mechanical properties of UHPFRC. It was evident that (1) an increase in steel fiber dosage and aspect ratio negatively impacted workability, owing to the interlocking between fibers; (2) compressive strength was positively influenced by the steel fiber dosage and aspect ratio; and (3) a faster loading rate significantly improved the mechanical properties. There were also some shortcomings in the measurement method for setting time. Lastly, this research highlights current issues for future research. The findings of the study are useful for practicing engineers to understand the distinctive characteristics of UHPFRC.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5202
Author(s):  
Mohammad Iqbal Khan ◽  
Wasim Abbass ◽  
Mohammad Alrubaidi ◽  
Fahad K. Alqahtani

High-strength concrete is used to provide quality control for concrete structures, yet it has the drawback of brittleness. The inclusion of fibers improves the ductility of concrete but negatively affects the fresh properties of fiber-reinforced concrete. The effects of different fine to coarse aggregate ratios on the fresh and hardened properties of steel fiber reinforced concrete were investigated in this study. Mixtures were prepared with various fine to coarse aggregate (FA/CA) ratios incorporating 1% steel fiber content (by volume) at constant water to cement ratio. The workability, unit weight, and temperature of the concrete in the fresh state, and the mechanical properties of steel-fiber-reinforced concrete (SFRC) were investigated. The inclusion of fiber in concrete influenced the mobility of concrete in the fresh state by acting as a barrier to the movement of coarse aggregate. It was observed that the concrete with an FA/CA ratio above 0.8 showed better flowability in the fresh state, whilst an above 0.9 FA/CA ratio requires excessive superplasticizer to maintain the flowability of the mixtures. The compressive and flexural strength of SFRC increased with an increase in the FA/CA ratio by around 10% and 28%, respectively. Experimental values of compressive strength and flexural strength showed good agreement, however, modulus of elasticity demonstrated slightly higher values. The experimentally obtained measurements of the mechanical properties of SFRC conformed reasonably well with the available existing prediction equations, and further enabled establishing predictive isoresponse interactive equations within the scope of the investigation domain.


2013 ◽  
Vol 357-360 ◽  
pp. 1049-1052 ◽  
Author(s):  
Xian Dong Wang ◽  
Chang Zhang ◽  
Zhen Huang ◽  
Guo Wei Chen

This paper studied experimentally the impact mechanical properties of bamboo fiber and hybrid steel fiber reinforced concrete. Steel fiber is already used in construction widely, but it is expensive in cost. As a kind of green building material, bamboo fiber can be used in the infrastructures together with concrete to improve the concretes mechanical properties. In order to investigate the impact mechanical properties of concrete reinforced with bamboo fiber and steel fiber, a series of concrete specimens reinforced with bamboo fiber, steel fiber or both steel fiber and bamboo fiber are investigated with self-designed impact device. The impact resistance abilities are tested and compared.


2021 ◽  
Vol 16 (4) ◽  
pp. 169-176
Author(s):  
Xiaohu Luo

In order to improve the application effect of steel fiber reinforced concrete (SFRC) in road bridge construction, the mechanical properties of SFRC with different fiber content were analyzed. The SFRC specimens with 0%, 0.5%, 1%, 1.5% and 2% fiber content were designed, and the mechanical properties were tested. The results showed that the compressive strength first increased and then decreased with the increase of fiber content, and the maximum compressive strength of SFRC1.5 reached 40.86 MPa, increasing by 7.19%; the increase amplitude of tensile strength of SFRC1.5 was 73.04%, which was the most obvious; the flexural strength of SFRC increased with the increase of fiber content, and the flexural strength of SFRC2 was 9.78 MPa, increasing by 94.43%. It is concluded from the experimental results of a case study that SFRC1.5 presents the optimal overall mechanical properties and is more suitable for road bridge construction.


Fibers ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 100 ◽  
Author(s):  
Augusto C. S. Bezerra ◽  
Priscila S. Maciel ◽  
Elaine C. S. Corrêa ◽  
Paulo R. R. Soares Junior ◽  
Maria T. P. Aguilar ◽  
...  

The effect of high temperature on the mechanical properties of concrete reinforced by steel fibers with various aspect ratios has been investigated in this study. Concrete specimens were fabricated from four different concrete mixtures and cured for 28 days. After curing and natural drying, the specimens were annealed at a temperature of 500 °C for 3 h in an electric furnace. The compressive and tensile strengths as well as the elastic moduli of the produced specimens were determined. It was found that the mechanical properties (especially flexural toughness) of steel fiber-reinforced concrete were less affected by high temperature as compared to those of control concrete specimens. The flexural tensile strength of fiber-reinforced concrete measured after high-temperature treatment was almost equal to the value obtained for the reference concrete specimen at room temperature. It should be noted that the addition of steel fibers to concrete preserves its mechanical properties after exposure to a temperature of 500 °C due to fire for a period of up to 3 h, and thus is able to improve its high-temperature structural stability. The test results of this study indicate that the use of steel fibers in concrete-based materials significantly enhances their fire and hear-resistant characteristics.


2019 ◽  
Vol 5 (1) ◽  
pp. 200 ◽  
Author(s):  
Shriganesh Shantikumar Kadam ◽  
V. V. Karjinni ◽  
C. S. Jarali

High strength steel fiber reinforced concrete (HSSFRC) was prepared with the help of steel fiber. 0.5%, 1.0%, and 1.5% steel fiber by volume of concrete specimen was used in concrete for present investigation. Compressive strength test and flexural strength test were conducted on cubical and prismatic specimens respectively.The main objective of the research work is to validate the experimental out comes by a numerical technique such as micromechanics approach. A high strength steel fiber reinforced concrete whose compressive strength is greater than 60 N/mm2 was prepared and tested on concrete testing machine. Flexural strength test was conducted on universal testing machine to evaluate the bending properties of concrete. It was observed that with increase in the percentage of steel fiber volume the compressive strength and flexural strength also increases. However the workability of concrete declines and concrete is no longer in working condition. Micromechanics technique helps to predict the strength properties which save time required for casting and such technique was found to be beneficial.


2011 ◽  
Vol 261-263 ◽  
pp. 115-119 ◽  
Author(s):  
Hong Wei Song ◽  
Hai Tao Wang

Since high strength of lightweight aggregate concrete leads to increased brittleness, fiber reinforcement should be considered for improving strength and ductility. 5 groups of SFLWC specimens with different steel fiber volumes including 0.0%, 0.5%, 1.0%, 1.5% and 2.0% were tested to investigate the effect of steel fiber content on the static mechanical properties and impact resistance of lightweight aggregate concrete. The static mechanical properties include the prismatic compressive strength, splitting tensile strength, first-crack flexural strength, flexural strength, and flexural toughness, etc. The experimental results indicated that addition of steel fiber can greatly improve such mechanical properties as the splitting tensile strength, flexural strength, flexural toughness and impact resistance, but leads to a little effect on compressive strength. Further more, the author suggests the feasible volume ratio of this kind of steel fiber is 1-1.5%.


2022 ◽  
Vol 26 (1) ◽  
pp. 55-63
Author(s):  
Haneen A. Hamed ◽  
◽  
Zinah W. Abass ◽  

Slurry Infiltrated Fiber Concrete (SIFCON) is a relatively new high-performance material that may be thought of as a high-fiber content version of fiber reinforced concrete. This matrix is comprised of flowing mortar that must penetrate the fiber network implanted in the molds sufficiently. SIFCON combines excellent mechanical properties with a high ductility and toughness grade. SIFCON is utilized in applications that demand a high degree of ductility and energy absorption, most notably seismic-resistant reinforced concrete structures and structures exposed to abnormal or explosive loads. Additionally, pavement overlays, prestressed beam repair, and structural reinforced concrete element restoration have all been effective. The main aim of this study is to determine the effect of hooked-end steel fiber and micro-steel fiber on the strength of SIFCON specimens exposed to flexural and splitting loading. Three volume fractions of steel fiber (8,10, and12) % were used in this investigation. By weight of cement in SIFCON slurry, the proportion of Silica Fume SF substitution was 10%. Flexural strength was determined by testing specimens of (100×100×500) mm, and splitting tensile strength was determined at 7 and 28 days using cylindrical specimens with dimensions (150mm × 300m).. The results obtained from these tests were compared with SIFCON containing micro steel fiber. The test results show superior characteristics of SIFCON containing hooked-end steel fiber, as compared with micro steel fiber. For example, the flexural strength and splitting strength are 24.89 MPa and 10.14 MPa, respectively for SIFCON with 8% hooked-end steel fiber and 17.51 MPa and 9.1 MPa for control specimens with micro steel fiber.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


Sign in / Sign up

Export Citation Format

Share Document