scholarly journals Effects of Steel Fiber Percentage and Aspect Ratios on Fresh and Harden Properties of Ultra-High Performance Fiber

2021 ◽  
Vol 2 (3) ◽  
pp. 501-515
Author(s):  
Rajib Kumar Biswas ◽  
Farabi Bin Ahmed ◽  
Md. Ehsanul Haque ◽  
Afra Anam Provasha ◽  
Zahid Hasan ◽  
...  

Steel fibers and their aspect ratios are important parameters that have significant influence on the mechanical properties of ultrahigh-performance fiber-reinforced concrete (UHPFRC). Steel fiber dosage also significantly contributes to the initial manufacturing cost of UHPFRC. This study presents a comprehensive literature review of the effects of steel fiber percentages and aspect ratios on the setting time, workability, and mechanical properties of UHPFRC. It was evident that (1) an increase in steel fiber dosage and aspect ratio negatively impacted workability, owing to the interlocking between fibers; (2) compressive strength was positively influenced by the steel fiber dosage and aspect ratio; and (3) a faster loading rate significantly improved the mechanical properties. There were also some shortcomings in the measurement method for setting time. Lastly, this research highlights current issues for future research. The findings of the study are useful for practicing engineers to understand the distinctive characteristics of UHPFRC.

Author(s):  
Ester Gimenez-Carbo ◽  
Raquel Torres ◽  
Pedro Serna

The overall objective of the work is the development of ultra high performance fiber reinforced concrete (UHPFRC) dosages that can be used for shotcrete. In this study, a number of UHPFRC mixtures with different amount of admixtures (plasticizers and accelerating) and different mixing time were tested, to increase either the rate of stiffening or setting of the concrete or the rate of hardening and early-strength development. Workability, consistency and mechanical properties of UHPFRC including compressive and flexural strengths at different ages were assessed. Results showed mixtures than begin their first setting in less than 1 minute, with very good mechanical properties in 24 hours, and without reducing the compressive strength at 28 days. From the results obtained, various uses of these mixtures are proposed taking into account, the new context of the Construction field, with the appearance of new placing concrete techniques.


2021 ◽  
Vol 20 (1) ◽  
pp. 37-51
Author(s):  
Kubilay Akçaözoğlu ◽  
◽  
Adem Kıllı ◽  

In this study, the effect of curing conditions on the mechanical properties of slurry infiltrated fiber reinforced concrete (SIFCON) was investigated. For this purpose, SIFCON samples containing 4% and 8% steel fiber with two different aspect ratios were produced. The samples were subjected to three different curing types, namely standard, dry and accelerated curing methods. Ultrasonic wave velocity, flexural strength, fracture toughness, compressive strength, impact resistance and capillary water absorption tests were performed on the samples. The highest flexural strength was found to be achieved in the samples with an aspect ratio of 55 and a content of 8% steel fiber. The most suitable curing method was determined as the standard curing method and the best flexural strength was achieved at the rate of 8%. According to the test results, the best strength properties were achieved in the samples exposed to the standard curing method. In addition, the samples exposed to the accelerated curing method showed satisfactory values. The accelerated curing method can be used as an alternative in SIFCON production especially in applications requiring mass production.


Fibers ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 74
Author(s):  
Hussain A. Jabir ◽  
Sallal R. Abid ◽  
Gunasekaran Murali ◽  
Sajjad H. Ali ◽  
Sergey Klyuev ◽  
...  

Ultra-high performance (UHP) concrete is a special type of fibrous cementitious composite that is characterized by high strength and superior ductility, toughness, and durability. This research aimed to investigate the resistance of ultra-high performance fiber-reinforced concrete (UHPFRC) against repeated impacts. An adjusted repeated drop mass impact test was adopted to evaluate the impact performance of 72 UHPFRC disc specimens. The specimens were divided into six mixtures each of 12 discs. The only difference between the mixtures was the types of fibers used, while all other mixture components were the same. Three types of fibers were used: 6 mm micro-steel, 15 mm micro-steel, and polypropylene. All mixtures included 2.5% volumetric content of fibers, however with different combinations of the three fiber types. The test results showed that the mixtures with the 15 mm micro-steel fiber absorbed a higher number of impact blows until cracking compared to other mixtures. The mixture with pure 2.5% of 15 mm micro-steel fiber exhibited the highest impact resistance, with percentage increases over the other mixtures ranging from 25 to 140%. In addition, the Weibull distribution was used to investigate the cracking impact resistance of UHP at different levels of reliability.


2020 ◽  
Author(s):  
Rudraswamy M P ◽  
B.R Patagundi ◽  
K.B Prakash

In the present paper, effects of shrinkage in fiber reinforced concrete are studied.Here, in the current research work, an attempt is made to study the effects onshrinkage of concrete when five different fiber materials are used for reinforcing plainconcrete. Three configurations of each reinforcing fiber material is studied. Fiberaspect ratios of 40 and 100 and a combination of the fibers of the two aspect ratios inequal proportion (hybrid) make up the three configurations for one individual fibermaterial reinforcement. Shrinkage values are indicated in terms of total length ofcrack and the total area of the crack. On-field measurement of crack dimensions atperiodic time intervals ranging from 0 minutes to 28 days after casting of concrete hasbeen undertaken to determine the accurate values of shrinkage cracks in the fifteenscenarios i.e. five reinforcing fiber materials with three configurations each usingaspect ratio of fibers 40, 100 and the hybrid (40 +100) case. It is seen that,irrespective of the material of fiber used for reinforcing concrete, hybridized concreteconsistently shows better results relative to single aspect ratio fiber reinforcement.This research also aims to provide a bench mark for future research works onshrinkage characteristics of hybridized fiber reinforced concrete


Sign in / Sign up

Export Citation Format

Share Document