scholarly journals Development of 50W High Quality Factor Printed Circuit Board Coils for a 6.78MHz, 60cm Air-gap Wireless Power Transfer System

2016 ◽  
Vol 19 (4) ◽  
pp. 468-479 ◽  
Author(s):  
Seung-Hwan Lee ◽  
Kyung-Pyo Yi
Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4535
Author(s):  
Viktor Shevchenko ◽  
Bohdan Pakhaliuk ◽  
Oleksandr Husev ◽  
Oleksandr Veligorskyi ◽  
Deniss Stepins ◽  
...  

A promising solution for inductive power transfer and wireless charging is presented on the basis of a single-phase three-level T-type Neutral Point Clamped GaN-based inverter with two coupled transmitting coils. The article focuses on the feasibility study of GaN transistor application in the wireless power transfer system based on the T-type inverter on the primary side. An analysis of power losses in the main components of the system is performed: semiconductors and magnetic elements. System modeling was performed using Power Electronics Simulation Software (PSIM). It is shown that the main losses of the system are static losses in the filter inductor and rectifier diodes on the secondary side, while GaN transistors can be successfully used for the wireless power transfer system. The main features of the Printed Circuit Board (PCB) design of GaN transistors are considered in advance.


Sign in / Sign up

Export Citation Format

Share Document