Ultra-thin printed circuit board metamaterial for high efficiency wireless power transfer

Author(s):  
Yeonje Cho ◽  
Hongseok Kim ◽  
Chiuk Song ◽  
Jinwook Song ◽  
Dong-Hyun Kim ◽  
...  
2018 ◽  
Vol 9 (1) ◽  
pp. 26 ◽  
Author(s):  
Cancan Rong ◽  
Xiong Tao ◽  
Conghui Lu ◽  
Zhaoyang Hu ◽  
Xiutao Huang ◽  
...  

In this paper, a mid-range wireless power transfer (WPT) system based on metamaterials (MMs) has been presented. It has been shown that the MMs are positioned in the WPT system to focalize the electromagnetic field for distance enhancement and efficiency improvement theoretically and experimentally. The MMs were fabricated by using a single layer printed-circuit board (PCB) with the negative magnetic permeability, μr. An applicable impedancetuning technology was implemented by changing the operating distance between the drive (load) resonator and the internal resonator, which can achieve the optimal load of the system. In addition, the Class-E RF (radio frequency) power amplifier is firstly proposed as the high frequency excitation source of the WPT system based on the MMs due to its simple design and high efficiency. The proposed technology can achieve efficiency improvements of 4.26% and 9.13% at distances of 100 cm and 200 cm around the 2.80 MHz WPT system with the MMs, respectively. Specially, it is worth mentioning that the system efficiency is enhanced by 18.58% at 160 cm. The measured results indicate the WPT system based on the MMs can assure a stable output power of 5W at a transfer distance of 200 cm.


2011 ◽  
Vol 383-390 ◽  
pp. 5984-5989
Author(s):  
Yan Ping Yao ◽  
Hong Yan Zhang ◽  
Zheng Geng

In this paper, we present theoretical analysis and detailed design of a class of wireless power transfer (WPT) systems based on strong coupled magnetic resonances. We established the strong coupled resonance conditions for practically implementable WPT systems. We investigated the effects of non-ideal conditions presented in most practical systems on power transfer efficiency and proposed solutions to deal with these problems. We carried out a design of WPT system by using PCB (Printed Circuit Board) antenna pair, which showed strong coupled magnetic resonances. The innovations of our design include: (1) a new coil winding pattern for resonant coils that achieves a compact space volume, (2) fabrication of resonant coils on PCBs, and (3) integration of the entire system on a pair of PCBs. Extensive experiments were performed and experimental results showed that our WPT system setup achieved a guaranteed power transfer efficiency 14% over a distance of two times characteristic length(44cm). The wireless power transfer efficiency in this PCB based experimental system was sufficiently high to lighten up a LED with a signal generator.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1348
Author(s):  
Yingqin Zeng ◽  
Conghui Lu ◽  
Cancan Rong ◽  
Xiong Tao ◽  
Xiaobo Liu ◽  
...  

In a wireless power transfer (WPT) system, the power transfer efficiency (PTE) decreases sharply with the increase in transfer distance. Metamaterials (MMs) have shown great potential to enhance PTE in mid-range WPT systems. In this paper, we propose two MM slabs of a 3 × 3 array to enhance the magnetic coupling. The MM unit cell was designed by using square spiral patterns on a thin printed circuit board (PCB). Moreover, the asymmetric four-coil WPT system was designed and built based on the practical application scenario of wireless charging for unmanned devices. The simulation and experimental results show that two MM slabs can enhance power transmission capability better than one MM slab. By optimizing the position and spacing of two MM slabs, the PTE was significantly improved at a mid-range distance. The measured PTEs of a system with two MM slabs can reach 72.05%, 64.33% and 49.63% at transfer distances of 80, 100 and 120 cm. When the transfer distance is 100 cm, the PTE of a system with MMs is 33.83% higher than that without MMs. Furthermore, the receiving and load coils were integrated, and the effect of coil offset on PTE was studied.


2015 ◽  
Vol 2 (2) ◽  
pp. 143-152 ◽  
Author(s):  
Guillaume Vigneau ◽  
Mohamed Cheikh ◽  
Rachid Benbouhout ◽  
Alexandru Takacs

This article presents a modeling and parametric investigation of printed circuit board (PCB) coils used in inductive power charging systems by using intensive full-wave electromagnetic simulations. Low frequencies applications (below 1 MHz) are targeted. The proposed modeling approach and design methodology are validated for wireless power transfer systems including transmitting (Tx) and receiving (Rx) coils. The impact of ferrite materials used for shielding and efficiency improvement is also analyzed. Optimized PCB coils allowing a theoretical efficiency of 88.7% at 100 kHz and 98.5% at 1 MHz confirms that PCB coils are appropriate for wireless power transfer at such frequencies.


Sign in / Sign up

Export Citation Format

Share Document