Structural Safety Evaluation for the Hydraulic Power Unit of Topside Module According to the Movement of Offshore Plant

Author(s):  
Bo-Rim Ryu ◽  
◽  
Jin-Uk Lee ◽  
Ho-Keun Kang
Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1758
Author(s):  
Koji Tsuchimoto ◽  
Yasutaka Narazaki ◽  
Billie F. Spencer

After a major seismic event, structural safety inspections by qualified experts are required prior to reoccupying a building and resuming operation. Such manual inspections are generally performed by teams of two or more experts and are time consuming, labor intensive, subjective in nature, and potentially put the lives of the inspectors in danger. The authors reported previously on the system for a rapid post-earthquake safety assessment of buildings using sparse acceleration data. The proposed framework was demonstrated using simulation of a five-story steel building modeled with three-dimensional nonlinear analysis subjected to historical earthquakes. The results confirmed the potential of the proposed approach for rapid safety evaluation of buildings after seismic events. However, experimental validation on large-scale structures is required prior to field implementation. Moreover, an extension to the assessment of high-rise buildings, such as those commonly used for residences and offices in modern cities, is needed. To this end, a 1/3-scale 18-story experimental steel building tested on the shaking table at E-Defense in Japan is considered. The importance of online model updating of the linear building model used to calculate the Damage Sensitive Features (DSFs) during the operation is also discussed. Experimental results confirm the efficacy of the proposed approach for rapid post-earthquake safety evaluation for high-rise buildings. Finally, a cost-benefit analysis with respect to the number of sensors used is presented.


Aerospace ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 104
Author(s):  
Dong-Hyeop Kim ◽  
Young-Cheol Kim ◽  
Sang-Woo Kim

Airworthiness standards of Korea recommend verifying structural safety by experimental tests and analytical methods, owing to the development of analysis technology. In this study, we propose a methodology to verify the structural safety of aircraft components based on airworthiness requirements using an analytical method. The structural safety and fatigue integrity of a linear actuator for flap control of aircraft was evaluated through numerical analysis. The static and fatigue analyses for the given loads obtained from the multibody dynamics analysis were performed using the finite element method. Subsequently, the margin of safety and vulnerable area were acquired and the feasibility of the structural safety evaluation using the analytical method was confirmed. The proposed numerical analysis method in this study can be adopted as an analytical verification methodology for the airworthiness standards of civilian aircraft in Korea.


2014 ◽  
Vol 1036 ◽  
pp. 935-940
Author(s):  
Leonard Domnisoru ◽  
Ionica Rubanenco ◽  
Mihaela Amoraritei

This paper is focused on an enhanced integrated method for structural safety assessment of maritime ships under extreme random wave loads. In this study is considered an 1100 TEU container test ship, with speed range 0 to 18 knots. The most comprehensive criteria for ships structural safety evaluation over the whole exploitation life is based on the long term ship structures analysis, that includes: stress hot-spots evaluation by 3D/1D-FEM hull models, computation of short term ship dynamic response induced by irregular waves, long term fatigue structure assessment. The analysis is enhanced by taking into account the ships speed influence on hydroelastic response. The study includes a comparative analysis on two scenarios for the correlation between the ships speed and waves intensity. The standard constant ship speed scenario and CENTEC scenario, with total speed loss at extreme waves condition, are considered. Instead of 20 years ship exploitation life estimated by classification societies rules from the long term structural safety criteria, the enhanced method has predicted more restrictive values of 14.4-15.7 years. The numerical analyses are based on own software and user subroutines. The study made possible to have a more realistic approach of ships structural strength assessment, for elastic and faster ships as container carriers, in compare to the standard one based only on naval rules, delivering a method with higher confidence in the designed structural safety.


Author(s):  
Buyoun Cho ◽  
Min-Su Kim ◽  
Sung Woo Kim ◽  
Seunghoon Shin ◽  
Yeseong Jeong ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiaokun Yan ◽  
Hu Li ◽  
Feng Liu ◽  
Yang Liu

It is still a challenge to accurately evaluate the structural safety of tunnel during the process of construction. To address this issue, a safety evaluation approach of tunnel based on the monitoring data during construction is proposed in this study. Firstly, the detailed description of modelling the tunnel excavation, releasing the load acting on the tunnel, and selecting the constitutive relationship of surrounding rock of tunnel is introduced. Secondly, aiming at an actual shallow-buried tunnel with underground excavation, utilizing the analytical results of deformation of tunnel, the structural safety of tunnel is evaluated by using a reliability-based method. Finally, the effectiveness of the proposed method is demonstrated by using the dynamic monitoring data obtained during the construction of an actual tunnel.


Author(s):  
Eurico Seabra ◽  
Jorge Costa ◽  
Hélder Puga ◽  
Celina Leão

Servo driven hydraulic power units have been implemented in some sectors of industry in order to counteract rising energy costs and reduce our ecological footprint. The advantages associated with the use of these technologies has motivated us to research a new control approach that allows its use independently, with reduced implementation costs and high efficiency. This investigation develops new solutions to concurrently implement and improve volumetric control methodology for oil-hydraulic power units, which aims to produce and provide strictly necessary hydraulic power to the actuators. The approach used is based on a balance of flows present in a hydraulic circuit, reducing the pressure ripple generated by the pumps, valves and actuators, using a hydraulic accumulator. The work begins with the mathematical modeling of a volumetric oil-hydraulic power unit, designed to demonstrate the concepts of the project, its components and the associated advantages. The definitions of the models presented are intended to exemplify the new control strategy and infer about the possibilities that arise from the use of this new methodology for power oil-hydraulic units. In order to carry out the research and conclude about the results of the simulations, two simulations were performed using MATLAB Simulink software for two distinct hydraulic circuits and their control strategy: resistive control and volume control with the use of a servo motor. In the resistive control, an internal gear pump driven by an induction motor with constant speed uses a pressure regulating valve to derive the excess of the flow to the reservoir. Despite their low efficiency, this type of assembly has very low costs and has a very good dynamic compared with traditional volumetric drive systems, avoiding the use of dedicated engineering. The volumetric control makes use of an internal gear pump (to allow direct comparisons with the resistive control method), a servo motor, a hydraulic accumulator and a directional valve which prevent the flow from de accumulator draining into the reservoir during the downtimes. The controller allows you to establish a direct relationship between the accumulator volume and pressure of the hydraulic circuit. The control methodology discussed throughout this work reveals an alternative volumetric control solution to consider, whether in new equipment or in retrofitting even with the different objectives of existing technologies available in the market. The simulations allow us to conclude on energy-saving and environmental advantages of the volumetric control system presented, comparing it with existing systems on the market.


Sign in / Sign up

Export Citation Format

Share Document