scholarly journals Persistent Monotypic Plasma Cells with Absence of Neoplastic B Cell Component in a Treated Case of Waldenström Macroglobulinemia: A Sign of Residual Disease?

Author(s):  
Smeeta Gajendra
2020 ◽  
Vol 4 (12) ◽  
pp. 2821-2836
Author(s):  
Jennifer Shrimpton ◽  
Matthew A. Care ◽  
Jonathan Carmichael ◽  
Kieran Walker ◽  
Paul Evans ◽  
...  

Abstract Waldenström macroglobulinemia (WM) is a rare malignancy in which clonal B cells infiltrate the bone marrow and give rise to a smaller compartment of neoplastic plasma cells that secrete monoclonal immunoglobulin M paraprotein. Recent studies into underlying mutations in WM have enabled a much greater insight into the pathogenesis of this lymphoma. However, there is considerably less characterization of the way in which WM B cells differentiate and how they respond to immune stimuli. In this study, we assess WM B-cell differentiation using an established in vitro model system. Using T-cell–dependent conditions, we obtained CD138+ plasma cells from WM samples with a frequency similar to experiments performed with B cells from normal donors. Unexpectedly, a proportion of the WM B cells failed to upregulate CD38, a surface marker that is normally associated with plasmablast transition and maintained as the cells proceed with differentiation. In normal B cells, concomitant Toll-like receptor 7 (TLR7) activation and B-cell receptor cross-linking drives proliferation, followed by differentiation at similar efficiency to CD40-mediated stimulation. In contrast, we found that, upon stimulation with TLR7 agonist R848, WM B cells failed to execute the appropriate changes in transcriptional regulators, identifying an uncoupling of TLR signaling from the plasma cell differentiation program. Provision of CD40L was sufficient to overcome this defect. Thus, the limited clonotypic WM plasma cell differentiation observed in vivo may result from a strict requirement for integrated activation.


2022 ◽  
Vol 11 ◽  
Author(s):  
Francesco Piazza ◽  
Veronica Di Paolo ◽  
Greta Scapinello ◽  
Sabrina Manni ◽  
Livio Trentin ◽  
...  

Lymphoplasmacytic lymphoma (LPL) is a rare subtype of B cell-derived non-Hodgkin lymphoma characterized by the abnormal growth of transformed clonal lymphoplasmacytes and plasma cells. This tumor almost always displays the capability of secreting large amounts of monoclonal immunoglobulins (Ig) of the M class (Waldenström Macroglobulinemia, WM). The clinical manifestations of WM/LPL may range from an asymptomatic condition to a lymphoma-type disease or may be dominated by IgM paraprotein-related symptoms. Despite the substantial progresses achieved over the last years in the therapy of LPL/WM, this lymphoma is still almost invariably incurable and exhibits a propensity towards development of refractoriness to therapy. Patients who have progressive disease are often of difficult clinical management and novel effective treatments are eagerly awaited. In this review, we will describe the essential clinical and pathobiological features of LPL/WM. We will also analyze some key aspects about the current knowledge on the mechanisms of drug resistance in this disease, by concisely focusing on conventional drugs, monoclonal antibodies and novel agents, chiefly Bruton’s Tyrosine Kinase (BTK) inhibitors. The implications of molecular lesions as predictors of response or as a warning for the development of therapy resistance will be highlighted.


Blood ◽  
2008 ◽  
Vol 112 (13) ◽  
pp. 5111-5121 ◽  
Author(s):  
Sophia Adamia ◽  
Amanda A. Reichert ◽  
Hemalatha Kuppusamy ◽  
Jitra Kriangkum ◽  
Anirban Ghosh ◽  
...  

Abstract To characterize genetic contributions toward aberrant splicing of the hyaluronan synthase 1 (HAS1) gene in multiple myeloma (MM) and Waldenstrom macroglobulinemia (WM), we sequenced 3616 bp in HAS1 exons and introns involved in aberrant splicing, from 17 patients. We identified a total of 197 HAS1 genetic variations (GVs), a range of 3 to 24 GVs/patient, including 87 somatic GVs acquired in splicing regions of HAS1. Nearly all newly identified inherited and somatic GVs in MM and/or WM were absent from B chronic lymphocytic leukemia, nonmalignant disease, and healthy donors. Somatic HAS1 GVs recurred in all hematopoietic cells tested, including normal CD34+ hematopoietic progenitor cells and T cells, or as tumor-specific GVs restricted to malignant B and plasma cells. An in vitro splicing assay confirmed that HAS1 GVs direct aberrant HAS1 intronic splicing. Recurrent somatic GVs may be enriched by strong mutational selection leading to MM and/or WM.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5399-5399
Author(s):  
Assia Bassarova ◽  
Gunhild Trøen ◽  
Signe Spetalen ◽  
Francesca Micci ◽  
Anne Tierens ◽  
...  

Abstract Lymphoplasmacytic lymphoma and marginal zone lymphoma in the bone marrow: paratrabecular involvement as an important distinguishing feature Assia Bassarova, Gunhild Tr¿en, Signe Spetalen, Francesca Micci, Anne Tierens, Delabie Abstract Lymphoplasmacytic lymphoma (LPL) is a neoplasm of small B-lymphocytes, lymphoplasmacytoid and plasma cells involving bone marrow and sometimes lymph nodes and spleen. Lymphoplasmacytic lymphoma is often accompanied by Waldenström macroglobulinemia. Since the original description, Waldenström macroglobulinemia has become recognized as a distinct clinicopathological entity defined by serum IgM paraprotein and bone marrow involvement by lymphoplasmacytic lymphoma. Since serum IgM paraprotein in itself is not specific and can be seen in a variety of small B-cell lymphoproliferative disorders, notable chronic lymphatic leukemia and marginal zone lymphoma, as well as in rare cases of myeloma, the diagnosis of Waldenström macroglobulinemia rests largely upon the proper diagnosis of LPL in the bone marrow. The differential diagnosis between bone marrow involvement by lymphoplasmacytic lymphoma (LPL) and marginal zone lymphoma (MZL) is challenging because histology and immunophenotype of both diseases overlap. The diagnosis may be helped by demonstrating the MYD88 L265P mutation, seen in most LPL. However, the mutation is also present in MZL, although at a lower frequency. To better define the distinguishing features of LPL we studied a series of bone marrow trephine biopsies of 59 patients with Waldenström's macroglobulinemia (WM) without extramedullary involvement and compared the findings with bone marrow biopsies from 23 patients with well-characterized MZL who also had bone marrow involvement. H&E and immunoperoxidase-stained sections of bone marrow trephine biopsies as well as flow cytometry and classical cytogenetics performed on aspirations were reviewed. The study was complemented with MYD88L265P mutation analysis on the bone marrow trephine biopsies of all patients. The features are summarized in Table 1. The most distinguishing features of LPL with respect to MZL were focal paratrabecular involvement (p<0.001), the presence of lymphoplasmacytoid cells (p<0.001), Dutcher bodies (p<0.001), increased numbers of mast cells (p<0.001) and the MYD88L265P mutation (p<0.001). Other features such as sinusoidal infiltration and immunophenotype were not distinguishing. Table 1. Summary of the pathology features of lymphoplasmacytic and marginal zone lymphoma in bone marrow trephine biopsies Lymphoplasmacytic lymphoma Marginal zone lymphoma p Infiltration pattern* Paratrabecular Nodular non-paratrabecular Paratrabecular and non-paratrabecular Intrasinusoidal Diffuse 37% (10/27) 0% (0/27) 56% (15/27) 37% (10/27) 0% (0/27) 0% (0/16) 75% (12/16) 0% (0/16) 37% (6/16) 25% (4/16) <0,001 <0,001 <0,001 1 0,015 Cytology Small lymphoid cells Plasmacytoid cells Plasma cells Dutcher nuclear inclusions Mast cells 100% (59/59) 100% (59/59) 93% (55/59) 90% (53/59) 87% (49/56) 100% (23/23) 0% (0/23) 78% (18/23) 0% (0/23) 9% (2/23) - <0,001 0,108 <0,001 <0,001 Immunophenotype of the lymphoma CD20 CD138 (plasma cells) CD5 CD23 IgK IgL IgM IgG Focal CD21+ or CD23+ follicular dendritic cell network in the stroma 100% (59/59) 88% (50/57) 21% (12/52) 29% (15/51) 81% (48/59) 19% (11/59) 97% (57/59) 3% (2/59) 20% (10/51) 100% (23/23) 80% (12/15) 0% (0/23) 13% (5/23) 26% (5/19) 10% (2/19) 64% (7/11) 0% (0/11) 48% (11/23) - - 0,014 0,580 - - - - 0,024 MYD88 L265P mutation 96% (45/47) 20% (3/15) 0,001 *the analysis was only performed on bone marrow trephine biopsies showing less than 66% lymphoma infiltration In conclusion, LPL can reliably be distinguished from MZL in the bone marrow by using a combination of pathology characteristics. In contrast to other studies, our findings stress the diagnostic importance of paratrabecular infiltration in LPL. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 117 (19) ◽  
pp. e190-e197 ◽  
Author(s):  
Lucy S. Hodge ◽  
Anne J. Novak ◽  
Deanna M. Grote ◽  
Esteban Braggio ◽  
Rhett P. Ketterling ◽  
...  

Abstract Waldenström macroglobulinemia (WM) is a rare, lymphoplasmacytic lymphoma characterized by hypersecretion of immunoglobulin M (IgM) protein and tumor infiltration into the bone marrow and lymphatic tissue. Our understanding of the mechanisms driving the development and progression of WM is currently by the shortage of representative cell models available for study. We describe here the establishment of a new WM cell line, MWCL-1. Comprehensive genetic analyses have unequivocally confirmed a clonal relationship between this novel cell line and the founding tumor. MWCL-1 cells exhibit an immunophenotype consistent with a diverse, tumor clone composed of both small B lymphocytes and larger lymphoplasmacytic cells and plasma cells: CD3−, CD19+, CD20+, CD27+, CD38+, CD49D+, CD138+, cIgM+, and κ+. Cytogenetic studies identified a monoallelic deletion of 17p13 (TP53) in both the cell line and the primary tumor. Direct DNA resequencing of the remaining copy of TP53 revealed a missense mutation at exon 5 (V143A, GTG>GCG). In accordance with primary WM tumors, MWCL-1 cells retain the ability to secrete high amounts of IgM protein in the absence of an external stimulus. The genetic, immunophenotypic, and biologic data presented here confirm the validity of the MWCL-1 cell line as a representative model of WM.


2021 ◽  
Vol 83 (3) ◽  
pp. 29-35
Author(s):  
Mayur Bhavsar ◽  
Joseph Cercone ◽  
Catherine Chiu

Waldenstrom macroglobulinemia (WM) is a rare, malignant lymphoproliferative B-cell disorder causing an excessive buildup of monoclonal protein. WM is associated with excessive buildup of IgM, which can cause blood hyperviscosity and damage many organ systems. This case report describes a patient who was followed annually but rapidly developed posterior pole and significant midperipheral hemorrhages secondary to a hyperviscosity condition of the retina. Management of this condition is dependent on macular involvement and must be co-managed with an oncologist.


Sign in / Sign up

Export Citation Format

Share Document