scholarly journals Formulation and Evaluation of Sol-Gel Drug Delivery System for Intracanal pH Sensitive Controlled Delivery of Chlorhexidine

Author(s):  
Kapil Gandhi
2020 ◽  
Vol 10 (7) ◽  
pp. 2595 ◽  
Author(s):  
Chih-Ling Huang ◽  
Wei Fang ◽  
Bo-Rui Huang ◽  
Yan-Hsiung Wang ◽  
Guo-Chung Dong ◽  
...  

Bioactive glass (BG) was made by the sol–gel method and doped with boron (B) to increase its bioactivity. Microstructures of BG and B-doped BG were observed by scanning electron microscopy, and phase identification was performed using an X-ray diffraction diffractometer. The ion concentrations released after soaking in simulated body fluid (SBF) for 1, 4, and 7 days were measured by inductively coupled plasma mass spectrometry, and the pH value of the SBF was measured after soaking samples to determine the variation in the environment. Brunauer–Emmett–Teller (BET) analysis was performed to further verify the characteristics of mesoporous structures. High performance liquid chromatography was used to evaluate the drug delivery ability of teicoplanin. Results demonstrated that B-doped BG performed significantly better than BG in parameters assessed by the BET analysis. B-doped BG has nanopores and more rough structures, which is advantageous for drug delivery as there are more porous structures available for drug adsorption. Moreover, B-doped BG was shown to be effective for keeping pH values stable and releasing B ions during soaking in SBF. The cumulative release of teicoplanin from BG and B-doped BG reached 20.09% and 3.17% on the first day, respectively. The drug release gradually slowed, reaching 29.43% and 4.83% after 7 days, respectively. The results demonstrate that the proposed bioactive glass has potential as a drug delivery system.


2012 ◽  
Vol 622-623 ◽  
pp. 821-826
Author(s):  
Yu Wen ◽  
Xiao Feng Deng ◽  
Liang Liang Liu ◽  
Shu Yun Shi ◽  
Li Xiong

Photodynamic therapy (PDT) is an effective, noninvasive and nontoxic therapeutics for cancer and some other diseases. It is becoming a alternative of traditional therapeutics for cancers. But the efficacy of PDT was restricted by insufficient selectivity and low solubility. In this study, novel multifunctional silica-based magnetic nanoparticles were prepared as targeting drug delivery system to achieve higher specificity and better solubility. Haematoporphyrin derivative (photosan) was used as photosensitizer. Magnetite nanoparticles (Fe3O4) and photosan were incorporated in silica nanoparticles by microemulsion and sol-gel methods. The prepared nanoparticles were characterized by X-ray diffraction, and transmission electron microscopy. The nanoparticles possessed good biocompatibility and could cause remarkable photodynamic anti-tumor effects. These suggested that photosan-Fe3O4 nanoparticles had great potential as effective drug delivery system in targeting photodynamic therapy.


2017 ◽  
Vol 12 (1) ◽  
pp. 166-187 ◽  
Author(s):  
Wenliang Fu ◽  
Mohd Hezmee Mohd Noor ◽  
Loqman Mohamad Yusof ◽  
Tengku Azmi Tengku Ibrahim ◽  
Yeap Swee Keong ◽  
...  

2017 ◽  
Vol 177 ◽  
pp. 324-333 ◽  
Author(s):  
Seyed Mohammad Hossein Dabiri ◽  
Alberto Lagazzo ◽  
Fabrizio Barberis ◽  
Amirreza Shayganpour ◽  
Elisabetta Finocchio ◽  
...  

2018 ◽  
Vol 97 ◽  
pp. 489-495 ◽  
Author(s):  
Liziane O.F. Monteiro ◽  
Renata S. Fernandes ◽  
Caroline M.R. Oda ◽  
Sávia C. Lopes ◽  
Danyelle M. Townsend ◽  
...  

2018 ◽  
Vol 33 (2) ◽  
pp. 170-181 ◽  
Author(s):  
Hongying Su ◽  
Wen Zhang ◽  
Yayun Wu ◽  
Xiaodong Han ◽  
Gang Liu ◽  
...  

Stimuli-responsive hydrogels have been widely researched as carrier systems, due to their excellent biocompatibility and responsiveness to external physiologic environment factors. In this study, dextran-based nanogel with covalently conjugated doxorubicin (DOX) was developed via Schiff base formation using the inverse microemulsion technique. Since the Schiff base linkages are acid-sensitive, drug release profile of the DOX-loaded nanogel would be pH-dependent. In vitro drug release studies confirmed that DOX was released much faster under acidic condition (pH 2.0, 5.0) than that at pH 7.4. Approximately 66, 28, and 9% of drug was released in 72 h at pH 2.0, 5.0, and 7.4, respectively. Cell uptake by the human breast cancer cell (MCF-7) demonstrated that the DOX-loaded dextran nanogel could be internalized through endocytosis and distributed in endocytic compartments inside tumor cells. These results indicated that the Schiff base-containing nanogel can serve as a pH-sensitive drug delivery system. And the presence of multiple aldehyde groups on the nanogel are available for further conjugations of targeting ligands or imaging probes.


2018 ◽  
Vol 7 (4) ◽  
pp. 291-301 ◽  
Author(s):  
Zepeng Jiao ◽  
Bin Zhang ◽  
Chunya Li ◽  
Weicong Kuang ◽  
Jingxian Zhang ◽  
...  

Abstract A drug delivery system based on carboxymethyl cellulose-grafted graphene oxide loaded by methotrexate (MTX/CMC-GO) with pH-sensitive and controlled drug-release properties was developed in this work. CMC was grafted on graphene oxide by ethylenediamine through hydrothermal treatment. CMC serves as a pH-sensitive trigger, while CMC-GO serves as a drug-carrying vehicle due to the curved layer and large plain surface. Different amounts of drugs could be loaded into CMC-GO nanocarriers by control of the original amount of drug/carrier ratios. Additionally, low cytotoxicity against NIH-3T3 cells and low in vivo toxicity was observed. In vivo tumor growth inhibition assays showed that MTX/CMC-GO demonstrated superior antitumor activity than free MTX against HT-29 cells. Moreover, prolonged survival time of mice was observed after MTX/CMC-GO administration. The MTX/CMC-GO drug delivery system has a great potential in colon cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document