invasion impacts
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 7)

H-INDEX

14
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Malte Jochum ◽  
Lise Thouvenot ◽  
Olga Ferlian ◽  
Romy Zeiss ◽  
Bernhard Klarner ◽  
...  

AbstractDeclining arthropod communities have recently gained a lot of attention with climate and land-use change among the most-frequently discussed drivers. Here, we focus on a seemingly underrepresented driver of arthropod-community decline: biological invasions. For ∼12,000 years, earthworms have been absent from wide parts of northern North America, but they have been re-introduced with dramatic consequences. Most studies investigating earthworm-invasion impacts focus on the belowground world, resulting in limited knowledge on aboveground-community changes. We present observational data on earthworm, plant, and aboveground-arthropod communities in 60 plots, distributed across areas with increasing invasion status (low, medium, high) in a Canadian forest. We analyzed how earthworm-invasion status and biomass impact aboveground arthropod community abundance, biomass, and species richness, and how earthworm impacts cascade across trophic levels. We sampled ∼13,000 arthropods, dominated by Hemiptera, Diptera, Araneae, Thysanoptera, and Hymenoptera. Total arthropod abundance, biomass, and species richness declined significantly from areas of low to those with high invasion status with reductions of 61, 27, and 18%, respectively. Structural Equation Models unraveled that earthworms directly and indirectly impact arthropods across trophic levels. We show that earthworm invasion can alter aboveground multitrophic arthropod communities and suggest that belowground invasions can be important drivers of aboveground-arthropod decline.



2021 ◽  
Author(s):  
Ismael Soto ◽  
Ross N. Cuthbert ◽  
Antonín Kouba ◽  
César Capinha ◽  
Anna Turbelin ◽  
...  

Abstract Biological invasions by amphibian and reptile species (i.e. herpetofauna) are numerous and widespread and have caused severe impacts on ecosystems, the economy and human health. However, there remains no synthesised assessment of the economic costs of these invasions. Therefore, using the most comprehensive database on the economic costs of invasive alien species worldwide (InvaCost), we analyse the costs caused by invasive alien herpetofauna according to taxonomic, geographic, sectoral and temporal dimensions, as well as the types of these costs. The cost of invasive herpetofauna totaled 17.0 billion US$ between 1986 and 2020, divided between 6.3 billion US$ for amphibians, 10.4 billion US$ for reptiles and 334 million US$ for mixed classes. However, these costs were associated predominantly with only two species (brown tree snake Boiga irregularis and American bullfrog Lithobates catesbeianus), with 10.3 and 6.0 billion US$ in costs, respectively. Costs for the remaining 19 reported species were relatively minor (< 0.6 billion US$), and they were entirely unavailable for over 94% of known invasive herpetofauna worldwide. Also, costs were positively correlated with research effort, suggesting research biases towards well-known taxa. So far, costs have been dominated by predictions and extrapolations (79%), and thus empirical observations for impact were relatively scarce. The activity sector most affected by amphibians was authorities-stakeholders through management (> 99%), while for reptiles, impact was reported mostly through damages to mixed sectors (65%). Geographically, Oceania and Pacific Islands recorded 63% of total costs, followed by Europe (35%) and North America (2%). Cost reports have generally increased over time. A greater effort in studying the costs of invasive herpetofauna is necessary for a more complete understanding of invasion impacts of these species. We emphasise the need for greater control and prevention policies concerning the spread of current and future invasive herpetofauna.



2021 ◽  
Author(s):  
Vadim A Karatayev ◽  
Lars G Rudstam ◽  
Alexander Y Karatayev ◽  
Lyubov E Burlakova ◽  
Boris V Adamovich ◽  
...  

The impacts of species invasions can subside or amplify over time as ecosystems "adapt" or additional invaders arrive. These long-term changes provide important insights into ecosystem dynamics. Yet studies of long-term dynamics are rare, system-specific, and often confound species impacts with coincident environmental change. We track post-invasion changes shared across ecosystems and multiple decades, quantifying the response of seven key features to quagga and zebra mussels congeners that re-engineer and increasingly co-invade freshwaters. Six polymictic shallow lakes with long-term data sets reveal remarkably similar trends, with the strongest ecosystem impacts occurring within 5-10 years of zebra mussel invasion. Surprisingly, plankton communities then exhibited a partial, significant recovery. This recovery was absent, and impacts of initial invasion amplified, in lakes where quagga mussels outcompeted zebra mussels and more completely depleted phytoplankton. Thus, invasion impacts subside over time but can amplify with serial introductions of competing, even closely similar, taxa.



2021 ◽  
Author(s):  
Kim Jaatinen ◽  
Ida Hermansson ◽  
Bertille Mohring ◽  
Benjamin B Steele ◽  
Markus Öst

Abstract Invasive species represent a major threat to global biodiversity by causing population declines and extinctions of native species. The negative impacts of introduced predators are well documented, yet a fundamental knowledge gap exists regarding the efficiency of potential mitigation methods to restore the ecosystem. Other understudied aspects concern prey behavioural antipredator responses and the historical context of native predator-prey interactions, which may moderate invasion impacts on native prey. Invasion impacts of American mink (Neovison vison) and raccoon dog (Nyctereutes procyonoides) into the Baltic Sea archipelago are poorly understood, and the efficiency of removal efforts as a means to alleviate depredation pressure on native prey is debated. Here, we examine the effectiveness of invasive predator removal on ground-nesting female common eider (Somateria mollissima) mortality, breeding success and breeding propensity over a nine-year period, while controlling for predation risk imposed by the main native predator, the white-tailed eagle (Haliaeetus albicilla). Our results clearly show that intensified removal of American minks and raccoon dogs decreased the number of female eiders killed during nesting, while improving both nesting success and breeding propensity. Such obvious positive effects of invasive predator removal are particularly noteworthy against the backdrop of a soaring eagle population, indicating that the impacts of invasives may become accentuated when native predators differ taxonomically and by hunting mode. This study shows that invasive alien predator removal is a cost-efficient conservation measure clearly aiding native fauna even under severe native predation pressure. Such cost-effective conservation actions call for governmental deployment across large areas.



Ecosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Lachlan Pettit ◽  
Georgia Ward‐Fear ◽  
Richard Shine


2021 ◽  
Vol 24 (2) ◽  
pp. 24-32
Author(s):  
Preetha Panikkar ◽  
M. Feroz Khan ◽  
U.K. Sarkar ◽  
B.K. Das

Abstract Biological invasions are a worldwide threat to the aquatic systems and have the potential to homogenize entire foodwebs and shift species abundance distributions to more skewed ones. Invasion impacts include effects on the foodweb structure and ecosystem functioning leading to a loss in native fish biodiversity and commercially important fisheries in many open water systems. The impacts of invasives are generally devastating as they spread in the foodweb with each species potentially interacting with multiple species. The foodweb modeling studies conducted in different inland aquatic ecosystems show that not all exotics cause a detrimental effect on the resilience of an ecosystem. Information on the foodweb structure and ecosystem properties is a prerequisite for formulating management protocols for conserving biodiversity, enhancement programmes and sustaining fisheries. The present paper reviews the impacts of invasive fishes in Indian aquatic ecosystems in the context of a changing foodweb scenario due to exotic fish species invasions. The information generated here could be applied for future research on similar ecosystems for deducing management actions.



NeoBiota ◽  
2020 ◽  
Vol 63 ◽  
pp. 25-37
Author(s):  
Christophe Diagne ◽  
Jane A. Catford ◽  
Franz Essl ◽  
Martín A. Nuñez ◽  
Franck Courchamp

Biological invasions can cause substantial economic losses and expenses for management, as well as harm biodiversity, ecosystem services and human well-being. A comprehensive assessment of the economic costs of invasions is a challenging but essential prerequisite for efficient and sustainable management of invasive alien species. Indeed, these costs were shown to be inherently heterogeneous and complex to determine, and substantial knowledge gaps prevent a full understanding of their nature and distribution. Hence, the development of a still-missing global, standard framework for assessing and deciphering invasion costs is essential to identify effective management approaches and optimise legislation. The recent advent of the InvaCost database – the first comprehensive and harmonised compilation of the economic costs associated with biological invasions worldwide – offers unique opportunities to investigate these complex and diverse costs at different scales. Insights provided by such a dataset are likely to be greatest when a diverse range of experience and expertise are combined. For this purpose, an international and multidisciplinary workshop was held from 12th to 15th November 2019 near Paris (France) to launch several project papers based on the data available in InvaCost. Here, we highlight how the innovative research arising from this workshop offers a major step forward in invasion science. We collectively identified five core research opportunities that InvaCost can help to address: (i) decipher how existing costs of invasions are actually distributed in human society; (ii) bridge taxonomic and geographic gaps identified in the costs currently estimated; (iii) harmonise terminology and reporting of costs through a consensual and interdisciplinary framework; (iv) develop innovative methodological approaches to deal with cost estimations and assessments; and (v) provide cost-based information and tools for applied management of invasions. Moreover, we attribute part of the success of the workshop to its consideration of diversity, equity and societal engagement, which increased research efficiency, creativity and productivity. This workshop provides a strong foundation for substantially advancing our knowledge of invasion impacts, fosters the establishment of a dynamic collaborative network on the topic of invasion economics, and highlights new key features for future scientific meetings.



Author(s):  
Kelly F. Robinson ◽  
Peter J. Alsip ◽  
Andrew R. Drake ◽  
Yu-Chun Kao ◽  
Marten A. Koops ◽  
...  


Geoderma ◽  
2020 ◽  
Vol 375 ◽  
pp. 114456
Author(s):  
Chong B. Zhang ◽  
Wen L. Liu ◽  
Bin Luo ◽  
Ming Guan ◽  
Jang Wang ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document