A NOVEL METHODOLOGY FOR NET ENVIRONMENTAL BENEFIT ANALYSIS (SPILL IMPACT MITIGATION ASSESSMENT)

2017 ◽  
Vol 2017 (1) ◽  
pp. 2454-2474 ◽  
Author(s):  
Peter M. TAYLOR ◽  
Martin A. CRAMER

ABSTRACT A key objective for any oil spill response is to minimize the impacts to ecological, socio-economic and cultural resources at risk. To that end, the contingency planners and incident managers have traditionally utilized a formal or informal Net Environmental Benefit Analysis (NEBA) for selecting the most appropriate response option(s) to minimize spill impacts and promote recovery. The processes used to conduct a NEBA have varied considerably between industry operators, though the outcomes in terms of strategy development have been similar. This variation in NEBA approaches can lead to challenges with communicating the underlying basis of response strategies to stakeholders. The oil industry published updated guidance in 2015 to explain the general principles of the NEBA process and facilitate stakeholder involvement. However, with industry’s increasing reliance on NEBA to enhance the transparency of response strategy development, a consistent methodology for conducting formal NEBAs was required. In response to the above issue key industry Associations (API, IOGP and IPIECA) initiated a collaborative project on developing a qualitative NEBA methodology that can be utilized if other, fit-for-purpose NEBA methodologies are not applicable or available. Industry has also begun transitioning to a more representative term for the NEBA process which is Spill Impact Mitigation Assessment (SIMA). Therefore, the SIMA term is used henceforth but it is important to note that the method described herein is not exclusive to the SIMA term and, as with NEBA, only represents one of many approaches that can be utilized to conduct a SIMA. This qualitative methodology is designed to give a consistent approach to larger or higher consequence oil spill scenarios, where multiple spill response options are being considered and a formal SIMA is warranted. Several industry spill response specialists and an independent expert participated in this project, resulting in the development of Guidance on Implementing Spill Impact Mitigation Assessment (IPIECA-IOGP-API 2017 in press).

Author(s):  
Victoria Broje ◽  
Nazgul Utegen

ABSTRACT Net Environmental Benefit Analysis (NEBA) and Spill Impact Mitigation Assessment (SIMA), a broader version of NEBA, are structured approaches used by response decision-makers and stakeholders during oil spill preparedness and response to compare available oil spill response options and identify those that have best potential to reduce environmental and socio-economic impacts and facilitate fastest recovery. The process comprises four stages: evaluate data, predict outcomes, balance trade-offs and select the best response options. This paper describes a case study of Spill Impact Mitigation Assessment conducted for shallow waters of North Caspian Sea. As a part of this analysis several steps were undertaken: - Environmental conditions in the area were characterized and critical environmental and socio-economic resources were identified;- Trajectory modeling was conducted for different seasons to evaluate oil fate and behavior with and without response techniques;- Impacts of a base scenario (no response) was compared to impacts of scenarios where different response techniques were used;- SIMA methodology was used to rank response techniques based on their ability to minimize environmental and socio-economic impacts;- Optimal combination of response options for each scenario was selected. This case study demonstrated how SIMA methodology could be applied even in challenging locations requiring careful analysis of environmental and socio-economic tradeoffs to ensure that selection of response strategies is supported by best available science.


2005 ◽  
Vol 2005 (1) ◽  
pp. 1095-1098
Author(s):  
Geir Morten Skeie ◽  
Frode Engen ◽  
Odd Willy Brude ◽  
Marit E. Randall

ABSTRACT The Norwegian Continental Shelf (NCS) extends from latitude 56° to 71°. Along the 82,000 km coastline and offshore, biodiversity is high, with large populations of fish, seabirds and marine mammals. In terms of oil and gas production, there is an increasing diversity in technical structures, water depth, and oil types, as recovery proceeds to smaller reservoirs. This calls for a high degree of flexibility in oil spill response strategies. According to Norwegian regulations, alternative response strategies must be analysed in a standardized way, including Net Environmental Benefit Analyses (NEBA). For this purpose, a GIS based method has been developed for net environmental benefit analysis of different oil spill response options for the NCS. Through a GIS interface, the user can interactively select a release location, an oil type, and a month for the oil spill. A standard map is generated, showing areas where different oil response strategies pose a net environmental benefit, net environmental loss, or a conflict.


2017 ◽  
Vol 2017 (1) ◽  
pp. 2017-190
Author(s):  
Jonathan Griffiths ◽  
Liam Harrington-Missin ◽  
Sarah Hall

Abstract (ID2017-190)This paper identifies the key information that should be included in an operational oil spill forecast. It shows how modellers convert huge quantities of data into a readily accessible modelling forecast report that can be rapidly interpreted and incorporated into the incident action plan.Effective response strategies can minimise the potentially devastating consequences of an oil spill. To protect nearby socio-economic and ecological sensitivities a response strategy needs to be implemented quickly.Oil spill forecasts help predict the behaviour of oil that has been spilled into the marine environment. These predictions are highly useful when planning response strategies for the coming days. Key operational information derived from oil spill forecasts can be broken down into two main areas:1. Where is oil expected to travel?By knowing where oil is expected to travel, response organisations can decide which sensitivities need protection. Forecasts will show if oil is predicted to reach fisheries, shorelines and other important resources. This information can be used within a Net Environmental Benefit Analysis (NEBA) to decide which sensitivities to prioritise for protection.2. What is expected to happen to the physical properties of the spilled oil?Once oil enters the marine environment it is subjected to weathering processes such as spreading, evaporation and biodegradation. These processes change the chemical makeup of the oil which usually becomes more viscous and can form emulsion. Information obtained from modelling can help decision makers choose the correct response options and equipment to use during a spill. For example, if a modelling forecast shows oil is likely to become highly viscous responders will know heavy oil skimmers will be needed if offshore recovery is to take place.The information referred to above can be extracted from the vast amount of data that is created when an oil spill model is run. As Incident Managers need to make informed decisions quickly, it is essential that oil spill forecasts are presented in a clear and concise fashion. From experience, it is often this extra step of making the data easily accessible to the decision maker that is overlooked and is of most value in a response.This means that response modellers need to be trained, not only in the science of oil spill modelling, but also in the art of conveying complex information to a range of end users from oil spill experts to interested members of the public.


2009 ◽  
Author(s):  
R. Aps ◽  
K. Herkül ◽  
J. Kotta ◽  
I. Kotta ◽  
M. Kopti ◽  
...  

Author(s):  
Dinara Amanzholova ◽  
Peter M. Taylor ◽  
Aliya Sadvokassova ◽  
Gulnara Dospayeva

ABSTRACT Kazakhstan's legal framework concerning oil spill issues has been reviewed and updated during 2015–2019, driven by the adoption of good international practice. Ensuring the full response toolkit is available and options are chosen to mitigate the overall impact of an incident were critical principles. The Oil Spill Preparedness Regional Initiative (OSPRI), in conjunction with national industry (North Caspian Operating Company - NCOC and KazMunaiGaz - KMG), shared the net Environmental Benefit Analysis (NEBA) approach and later the Spill Impact Mitigation Assessment (SIMA) with key agencies and authorities as part of this effort. As the first step, workshops and seminars on NEBA were organized at local and national levels. These were facilitated by international experts and national consultants to build awareness and understanding. The second step was to embed NEBA within the legal framework. The legal system has a strong hierarchy including Codes, Laws and Orders. The National Contingency Plan (2015), approved by Order, acknowledged NEBA and gave impetus to develop additional legislation on the NEBA process. To ensure proper legal force, it was suggested to embed NEBA higher up the hierarchy, in the Subsoil Use Code (2017). Practical implementation of NEBA (during simulation exercises) and review by authorities of a draft NEBA report prepared by NCOC, revealed that the process required further clarification. It was not clear how NEBA should be presented in contingency plans, for authorities' review and approval i.e. whether it should be a separate report or incorporated within the plan. It was mooted that proposed amendments to the Environmental Code would aid clarification. In order to support a coherent process of contingency plans' approval, NEBA should be supported by a suitable and recognized implementation methodology. The SIMA methodology has been proposed as an option in Kazakhstan. Work on the Environmental Code's amendments, incorporating suitable clarifications, is expected to be completed in 2020. Based on the experience of NEBA adoption in Kazakhstan, cooperation between industry and authorities, exercises and workshops leads to positive results. The process has taken some years, as capacity building and legislative developments were required, but is reaching a successful conclusion. This will inform the choice of response options for any future incidents, to achieve least overall ecological and socio-economic impacts.


2018 ◽  
Author(s):  
Peter M. Taylor ◽  
Martin A. Cramer ◽  
Robert T.E. Cox ◽  
Richard Santner

2001 ◽  
Vol 2001 (2) ◽  
pp. 1185-1194
Author(s):  
Leigh M. Stevens ◽  
John T. Roosen ◽  
Paul Irving

ABSTRACT This paper describes guidelines for making decisions on dispersant use in New Zealand. The guidelines are designed to facilitate and document rapid and justifiable decisions for dispersant use during a marine oil spill, and were developed by modifying existing international models and information to suit N.Z. requirements. They are based around a simple flowchart that highlights the key questions that need to be answered during a spill. Each key question in the flowchart is linked to supporting information that provides further details, or directs the decision maker—normally a statutorily appointed On-Scene Commander (OSC)—to where the information can be obtained. Although dispersant use is pre-approved in virtually all N.Z. waters, the guidelines do not provide hard and fast rules for when dispersants should or should not be used. The OSC is expected to judge, based on the information available and the type of values requiring protection, whether a dispersant response will result in a net environmental benefit, either on its own, or in combination with other response options. The guidelines provide a simple way to collect the information required to make decisions about dispersant use within a rapid, systematic, and flexible framework, with supporting information available where needed to make and document dispersant decisions. The guidelines are designed specifically for use during a spill response, and as such are self-contained, concise, and easy to read, and allow quick access to the information essential for deciding about dispersant use. While they rely on the decision maker being knowledgeable about dispersant issues, they generally will be of value to anyone involved in spill response planning and decision making.


2014 ◽  
Vol 955-959 ◽  
pp. 140-143
Author(s):  
Wei Shen ◽  
Zhi Xia Wang ◽  
Rong Chang Chen ◽  
Chun Ling Liu

The oil spill dispersant called “elimination agent of oil” is used to disperse the oil slicks to facilitate the natural elimination of oil. Oil spill dispersants are used to enhance the rate of natural dispersion of an oil spill at sea. There is growing acceptance worldwide that use of dispersants to counter the effects of an oil spill offers many advantages and can often result in a net environmental benefit when considered in relation to other response options. Timely spraying oil spill dispersants is the main measures to remove surface oil pollution and to prevent fires, when mechanical recycling cannot be used in case of emergency. Efficient and environmentally friendly oil spill dispersant meet both the emulsification dispersion and zero pollution to the environment, and has been more widely used and developed.


Author(s):  
Dennis Peach ◽  
Kirstin Taylor

Abstract During a response to an oil spill the responsible party needs to develop Incident Action Plans that aim to minimise the environmental and socio-economic effects of the incident on the surrounding area. It is widely accepted that Net Environmental Benefit Analysis (NEBA) and the Spill Impact Mitigation Assessment (SIMA) methodology should be considered before, during and after any spill response. However, during the initial response phase, actions are typically reactive. Decisions may therefore be based on the needs of the response, media or the local inhabitants rather than the long-term benefits to the affected area. But how can we confirm that when the strategies and tactics are developed NEBA/SIMA is taken into account? To ensure that all response options chosen have considered NEBA/SIMA, especially during the initial stages of a response, it should be embedded into the action plan development process. This will also capture the decision-making process for the strategy and tactical plan development as evidence. This paper explores where an Incident Management System (IMS) could be amended to ensure that NEBA/SIMA is integrated into decision making. This should guarantee that NEBA/SIMA is always considered in determining the correct response operations that capitalize on the net environmental benefits for the response. The process will follow the IPIECA/IOPG good practice guidelines for incident management implementation of IMS and contest the existing formal processes found in Incident Command System (ICS).


Sign in / Sign up

Export Citation Format

Share Document