scholarly journals Quantification of oil lost from tanker vessel using space borne radar datasets - Case study of Haldia port oil spill, July 2018.

Author(s):  
S.J Prasad ◽  
T.M. Balakrishnan Nair

Abstract 686884 Determining the spilled volume of the marine oil pollutant is an essential requisite for the oil spill modellers and the responders. Generally, the mass of the spilled pollutant is computed from the total quantity and the remaining quantity of the storage tank of the distressed vessel. A method to estimate the quantity of the spilled oil pollutant using the space -borne synthetic aperture radar dataset is elaborated here. The synthetic aperture radar data, its ability to penetrate cloud cover, irrespective of weather conditions, has been widely used to detect the signature of spilt oil. SAR data available from European Space Agency and Canadian Space Agency were used to detect the oil spills as they are proved to be appropriate for oil spill detection. Minor oil spill occured off Haldia Port, off Kolkata from SSL tanker vessel on 14 July 2018. The geographical location of the distressed vessel is 88.775 ′E, 21.441 ′N. The zone of the vessel distress was monitored for oil slicks. The acquisition plan of the Radar satellite Sentinel -1A was obtained from European Space Agency. As per that, the pass of the Sentinel -1A was available on 15 July 2018 and 17 July 2018 for the region of study. The Synthetic Aperture Radar (SAR) datasets were obtained from Sentinel -1A as per their availability. Those datasets were processed using Sentinel Application Platform (SNAP) tool box. The SAR data is subjected to terrain correction, which automatically reprojects the radar scene. The next stage is performing radiometric calibration, which converts the amplitude into intensity values. The radar reflectance values are converted to Sigma0 intensity values in Sentinel tool box. This Sigma0 values were wrote in netcdf format for identifying the oil slicks. The pixels of lesser intensity values are identified and are interpreted for oil slicks. The zone of the oil slicks in the radar scene are considered as irregular polygons. The area of those polygons were computed. Later the volume of the spilled oil is computed using the thickness of the spilled oil pollutant. Finally the mass of the pollutant is computed. It was collectively estimated from the SAR datasets, that, 33 Tons of Fuel oil was lost from SSL vessel that sank off Haldia Port. This paper elaborates in detail about the method of processing SAR dataset and estimating the quantity of oil lost from the vessel using SAR datasets.

2021 ◽  
Vol 13 (9) ◽  
pp. 1607
Author(s):  
Guannan Li ◽  
Ying Li ◽  
Yongchao Hou ◽  
Xiang Wang ◽  
Lin Wang

Marine oil spill detection is vital for strengthening the emergency commands of oil spill accidents and repairing the marine environment after a disaster. Polarimetric Synthetic Aperture Radar (Pol-SAR) can obtain abundant information of the targets by measuring their complex scattering matrices, which is conducive to analyze and interpret the scattering mechanism of oil slicks, look-alikes, and seawater and realize the extraction and detection of oil slicks. The polarimetric features of quad-pol SAR have now been extended to oil spill detection. Inspired by this advancement, we proposed a set of improved polarimetric feature combination based on polarimetric scattering entropy H and the improved anisotropy A12–H_A12. The objective of this study was to improve the distinguishability between oil slicks, look-alikes, and background seawater. First, the oil spill detection capability of the H_A12 combination was observed to be superior than that obtained using the traditional H_A combination; therefore, it can be adopted as an alternate oil spill detection strategy to the latter. Second, H(1 − A12) combination can enhance the scattering randomness of the oil spill target, which outperformed the remaining types of polarimetric feature parameters in different oil spill scenarios, including in respect to the relative thickness information of oil slicks, oil slicks and look-alikes, and different types of oil slicks. The evaluations and comparisons showed that the proposed polarimetric features can indicate the oil slick information and effectively suppress the sea clutter and look-alike information.


2019 ◽  
Vol 11 (15) ◽  
pp. 1766 ◽  
Author(s):  
Marios Tzouvaras ◽  
Dimitris Kouhartsiouk ◽  
Athos Agapiou ◽  
Chris Danezis ◽  
Diofantos G. Hadjimitsis

Active satellite remote sensors have emerged in the last years in the field of archaeology, providing new tools for monitoring extensive cultural heritage landscapes and areas. These active sensors, namely synthetic aperture radar (SAR) satellites, provide systematic datasets for mapping land movements triggered from earthquakes, landslides, and so on. Copernicus, the European program for monitoring the environment, provides continuous radar datasets through the Sentinel-1 mission with an almost worldwide coverage. This paper aims to demonstrate how the use of open-access and freely distributed datasets such as those under the Copernicus umbrella, along with the exploitation of open-source radar processing software, namely the sentinel applications platform (SNAP) and SNAPHU tools, provided respectively by the European Space Agency (ESA) and the University of Stanford, can be used to extract an SAR interferogram in the wider area of Paphos, located in the western part of Cyprus. The city includes various heritage sites and monuments, some of them already included in the UNESCO World Heritage list. The interferogram was prepared to study the effects of an earthquake to the buildings and sites of the area. The earthquake of a 5.6 magnitude on the Richter scale was triggered on 15 April 2015 and was strongly felt throughout the whole island. The interferogram results were based on Differential Synthetic Aperture Radar Interferometry (D-InSAR) methodology, finding a maximum uplift of 74 mm and a maximum subsidence of 31 mm. The overall process and methodology are presented in this paper.


1993 ◽  
Vol 39 (131) ◽  
pp. 119-132 ◽  
Author(s):  
K. C. Jezek ◽  
M. R. Drinkwater ◽  
J. P. Crawford ◽  
R. Bindschadler ◽  
R. Kwok

AbstractAnalyses of the first aircraft multi-frequency, Polarimetric synthetic aperture radar (SAR) data acquired over the southwestern Greenland ice sheet are presented. Data were collected on 31 August 1989 by the Jet Propulsion Laboratory SAR using the NASA DC-8 aircraft. Along with curvilinear patterns associated with large-scale morphologic features such as crevasses, lakes and streams, frequency and polarization dependencies are observed in the P-, L-and C-band image products. Model calculations that include firn grain-size and volumetric water content suggest that tonal variations in and between the images are attributable to large-scale variations in the snow-and ice-surface characteristics, especially snow wetness. In particular, systematic trends in back-scatter strength observed at C-band across regions of changing snow wetness are suggestive of a capability to delineate boundaries between snow facies. Ice lenses and ice pipes are the speculated cause for similar trends in P-band back-scatter. Finally, comparison between SEASAT SAR data collected in 1978 and these airborne data collected in 1989 indicate a remarkable stability of surface patterns associated with the locations of supraglacial lake and stream systems.


2020 ◽  
Vol 20 (5) ◽  
pp. 1463-1468
Author(s):  
Diego Cerrai ◽  
Qing Yang ◽  
Xinyi Shen ◽  
Marika Koukoula ◽  
Emmanouil N. Anagnostou

Abstract. In this communication, we present application of the automated near-real-time (NRT) system called RAdar-Produced Inundation Diary (RAPID) to European Space Agency Sentinel-1 synthetic aperture radar (SAR) images to produce flooding maps for Hurricane Dorian in the northern Bahamas. RAPID maps, released 2 d after the event, show that coastal flooding in the Bahamas reached areas located more than 10 km inland, covering more than 3000 km2 of continental area. RAPID flood estimates from subsequent SAR images show the recession of the flood across the islands and present high agreement scores when compared to Copernicus Emergency Management Service (Copernicus EMS) estimates.


2020 ◽  
Vol 12 (14) ◽  
pp. 2228
Author(s):  
Marco Ottinger ◽  
Claudia Kuenzer

The coastal zone offers among the world’s most productive and valuable ecosystems and is experiencing increasing pressure from anthropogenic impacts: human settlements, agriculture, aquaculture, trade, industrial activities, oil and gas exploitation and tourism. Earth observation has great capability to deliver valuable data at the local, regional and global scales and can support the assessment and monitoring of land- and water-related applications in coastal zones. Compared to optical satellites, cloud-cover does not limit the timeliness of data acquisition with spaceborne Synthetic Aperture Radar (SAR) sensors, which have all-weather, day and night capabilities. Hence, active radar systems demonstrate great potential for continuous mapping and monitoring of coastal regions, particularly in cloud-prone tropical and sub-tropical climates. The canopy penetration capability with long radar wavelength enables L-band SAR data to be used for coastal terrestrial environments and has been widely applied and investigated for the following geoscientific topics: mapping and monitoring of flooded vegetation and inundated areas; the retrieval of aboveground biomass; and the estimation of soil moisture. Human activities, global population growth, urban sprawl and climate change-induced impacts are leading to increased pressure on coastal ecosystems causing land degradation, deforestation and land use change. This review presents a comprehensive overview of existing research articles that apply spaceborne L-band SAR data for geoscientific analyses that are relevant for coastal land applications.


Proceedings ◽  
2018 ◽  
Vol 2 (7) ◽  
pp. 332
Author(s):  
Prashant H. Pandit ◽  
Shridhar D. Jawak ◽  
Alvarinho J. Luis

The ice flow velocity is a critical variable in understanding the glacier dynamics. The Synthetic Aperture Radar Interferometry (InSAR) is a robust technique to monitor Earth’s surface mainly to measure its topography and deformation. The phase information from two or more interferogram further helps to extract information about the height and displacement of the surface. We used this technique to derive glacier velocity for Polar Record Glacier (PRG), East Antarctica, using Sentinel-1 Single Look Complex images that were captured in Interferometric Wide mode. For velocity estimation, Persistent Scatterer interferometry (PS-InSAR) method was applied, which uses the time coherent of permanent pixel of master images and correlates to the same pixel of the slave image to get displacement by tracking the intensity of those pixels. C-band sensor of European Space Agency, Sentinel-1A, and 1B data were used in this study. Estimated average velocity of the PRG is found to be approximately ≈400 ma−1, which varied from ≈100 to ≈700 ma−1. We also found that PRG moves at ≈700 and 200 ma−1 in the lower part and the upper inland area, respectively.


2019 ◽  
Vol 11 (11) ◽  
pp. 1322 ◽  
Author(s):  
Donato Amitrano ◽  
Raffaella Guida ◽  
Gerardo Di Martino ◽  
Antonio Iodice

The Sentinel-1 mission has now reached its maturity, and is acquiring high-quality images with a high revisit time, allowing for effective continuous monitoring of our rapidly changing planet. The purpose of this work is to assess the performance of the different synthetic aperture radar products made available by the European Space Agency through the Sentinels Data Hub against glacier displacement monitoring with offset tracking methodology. In particular, four classes of products have been tested: the medium resolution ground range detected, the high-resolution ground range detected, acquired in both interferometric wide and extra-wide swath, and the single look complex. The first are detected pre-processed images with about 40, 25, and 10-m pixel spacing, respectively. The last category, the most commonly adopted for the application at issue, represents the standard coherent synthetic aperture radar product, delivered in unprocessed focused complex format with pixel spacing ranging from 14 to 20 m in azimuth and from approximately 2 to 6 m in range, depending on the acquisition area and mode. Tests have been performed on data acquired over four glaciers, i.e., the Petermann Glacier, the Nioghalvfjerdsfjorden, the Jackobshavn Isbræ and the Thwaites Glacier. They revealed that the displacements estimated using interferometric wide swath single look complex and high-resolution ground range detected products are fully comparable, even at computational level. As a result, considering the differences in memory consumption and pre-processing requirements presented by these two kinds of product, detected formats should be preferred for facing the application.


2021 ◽  
pp. 245
Author(s):  
I Made Oka Guna Antara ◽  
Tati Budi Kusmiyarti ◽  
R. Suyarto ◽  
Wiyanti Wiyanti

Pemanfaatan teknologi penginderaan jauh dalam bidang pemetaan telah lama dikenal. Data penginderaan jauh menjadi salah satu sumber data untuk pemetaan, yang memberikan informasi rupa bumi, seperti Kawasan pemukiman, Kawasan hutan, Kawasan pertanian dan lain sebagainya. Salah satu jenis data penginderaan jauh adalah citra Synthetic Aperture Radar (SAR), SAR memancarkan gelombang elektromagnetik untuk mendapatkan informasi dari target/rupa bumi. Citra SAR memiliki kelebihan tidak terpengaruh awan, cuaca (hujan dengan intensitas ringan), dan dapat bekerja sepanjang hari serta malam, dibandingkan dengan citra optik. Citra SAR dengan metode komposit RGB dual polarimetric multiple menggunakan aplikasi SNAP Toolbox dari European Space Agency (ESA) dapat dimanfaatkan untuk membedakan lokasi persawahan dengan bukan sawah, perbedaan backscatter atau nilai reflektan digunakan untuk mengetahuinya. Penelitian lebih lanjut menggunakan metode klasifikasi non parametrik Random Forest, dengan membuat kelas menjadi 2, yaitu sawah dan non sawah, ke-2 kelas digunakan sebagai training data untuk metode tersebut. Data yang digunakan adalah citra satelit Sentinel-1 pada tanggal 30 Maret 2020 dengan mode IW Level-1 GRD Ascending direction beresolusi 20x22 m dan polarisasi ganda (VH dan VV) di Kecamatan Kediri, Kabupaten Tabanan, Provinsi Bali. Dari hasil penelitian diperoleh akurasi 96,90%.


Sign in / Sign up

Export Citation Format

Share Document