scholarly journals An Experimental Investigation on Low Cycle Fatigue Behavior of Alloy 617 Base Metal and Alloy 617/Alloy 617 Weld Joints

2014 ◽  
Vol 18 (5) ◽  
pp. 115-121 ◽  
Author(s):  
Pil-Ho Choi ◽  
Seon-Jin Kim ◽  
Woo-Gon Kim ◽  
Min-Hwan Kim
Metals ◽  
2016 ◽  
Vol 6 (8) ◽  
pp. 178 ◽  
Author(s):  
Rando Dewa ◽  
Seon Kim ◽  
Woo Kim ◽  
Eung Kim

2014 ◽  
Vol 3 ◽  
pp. 2201-2206 ◽  
Author(s):  
Seon-Jin Kim ◽  
Pil-Ho Choi ◽  
Rando Tungga Dewa ◽  
Woo-Gon Kim ◽  
Min-Hwan Kim

2013 ◽  
Vol 55 ◽  
pp. 176-180 ◽  
Author(s):  
Sayan Kalyan Chandra ◽  
Vani Shankar ◽  
K. Mariappan ◽  
R. Sandhya ◽  
P.C. Chakraborty

2021 ◽  
Author(s):  
Shutong Zhang ◽  
Sebastian Romo ◽  
Rafael Arthur Giorjao ◽  
Jorge Penso ◽  
Haixia Guo ◽  
...  

Abstract Low-cycle fatigue failure has been widely accepted as the key mechanism causing damages of coke drums during cyclic thermal-mechanical loadings. Common damages of coke drums known as bulging and cracking are associated with accumulative plasticity caused by thermal and mechanical strains. External repairs using temper-bead welding techniques are implemented to repair welds in the damaged areas of coke drums, which provide structural support to the vessels. Compared with matching filler metals, Ni-base fillers including alloy 625 and alloy 182 are compatible with both low-alloy steel base metal and internal clads in terms of weldability and thermal expansion. However, the differences of yield strengths and cyclic hardening behaviors of nickel-base alloys from base metals compromise the fatigue resistances of weld joints. In this study, alloy 182 and alloy 625 repair coupons were evaluated and compared based on isothermal low-cycle fatigue tests. Low-cycle fatigue behaviors of both weld metals and 1.25Cr-0.5Mo base metal were measured at 1.0%, 1.5% and 2.0% strain amplitudes. Test results indicate both nickel-base filler metals exhibit overmatching strength over the base metal due to cyclic hardening. Low-cycle fatigue tests of Heat Affected zone (HAZ) samples show the failures of alloy 625 weld joints occur in the base metal, while the failures of alloy 182 weld joints occur along the fusion boundary. The observations show strength mismatch and fatigue resistance are the key factors to determine failure locations of the joints. In addition, cyclic hardening coefficients based on kinematic hardening model were extracted from experimental data to simulate the cyclic behaviors of the weld joints. Finite element simulation results were shown to be consistent with experimental data at stabilized cycles. Cyclic behaviors of weld metal and base metal within a weld transition sample were calculated based on the numerical model.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Celine Cabet ◽  
Laura Carroll ◽  
Richard Wright

Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the very high temperature nuclear reactor (VHTR), expected to have an outlet temperature as high as 950 °C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanisms and failure life. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950 °C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle fatigue specimens exhibited transgranular cracking. Intergranular cracking was observed in the creep-fatigue specimens and the addition of a hold time at peak tensile strain degraded the cycle life. This suggests that creep-fatigue interaction occurs and that the environment may be partially responsible for accelerating failure.


Author(s):  
J. K. Wright ◽  
L. J. Carroll ◽  
J. A. Simpson ◽  
R. N. Wright

The low cycle fatigue behavior of Alloy 617 has been evaluated at 850 °C and 950 °C, the temperature range of particular interest for the intermediate heat exchanger on a proposed high-temperature gas-cooled nuclear reactor. Cycles to failure were measured as a function of total strain range and varying strain rate. Results of the current experiments compare well with previous work reported in the literature for a similar range of temperatures and strain rate. The combined data demonstrate a Coffin–Manson relationship, although the slope of the Coffin–Manson fit is close to −1 rather than the typically reported value of −0.5. At 850 °C and a strain rate of 10−3 /s Alloy 617 deforms by a plastic flow mechanism in low cycle fatigue and exhibits some cyclic hardening. At 950 °C for strain rates of 10−3–10−5 /s, Alloy 617 deforms by a solute drag creep mechanism during low cycle fatigue and does not show significant cyclic hardening or softening. At this temperature the strain rate has little influence on the cycles to failure for the strain ranges tested.


Sign in / Sign up

Export Citation Format

Share Document