scholarly journals Evaluation of Fatigue Life on Alloy 617 Base Metal and Alloy 617/Alloy 617 Weld Joints under Low Cycle Fatigue Loading

2014 ◽  
Vol 18 (5) ◽  
pp. 122-128 ◽  
Author(s):  
Rando Tungga Dewa ◽  
Seon-Jin Kim ◽  
Woo-Gon Kim ◽  
Min-Hwan Kim
2006 ◽  
Vol 514-516 ◽  
pp. 804-809
Author(s):  
S. Gao ◽  
Ewald Werner

The forging die material, a high strength steel designated W513 is considered in this paper. A fatigue damage model, based on thermodynamics and continuum damage mechanics, is constructed in which both the previous damage and the loading sequence are considered. The unknown material parameters in the model are identified from low cycle fatigue tests. Damage evolution under multi-level fatigue loading is investigated. The results show that the fatigue life is closely related to the loading sequence. The fatigue life of the materials with low fatigue loading first followed by high fatigue loading is longer than that for the reversed loading sequence.


2014 ◽  
Vol 3 ◽  
pp. 2201-2206 ◽  
Author(s):  
Seon-Jin Kim ◽  
Pil-Ho Choi ◽  
Rando Tungga Dewa ◽  
Woo-Gon Kim ◽  
Min-Hwan Kim

2021 ◽  
Author(s):  
Shutong Zhang ◽  
Sebastian Romo ◽  
Rafael Arthur Giorjao ◽  
Jorge Penso ◽  
Haixia Guo ◽  
...  

Abstract Low-cycle fatigue failure has been widely accepted as the key mechanism causing damages of coke drums during cyclic thermal-mechanical loadings. Common damages of coke drums known as bulging and cracking are associated with accumulative plasticity caused by thermal and mechanical strains. External repairs using temper-bead welding techniques are implemented to repair welds in the damaged areas of coke drums, which provide structural support to the vessels. Compared with matching filler metals, Ni-base fillers including alloy 625 and alloy 182 are compatible with both low-alloy steel base metal and internal clads in terms of weldability and thermal expansion. However, the differences of yield strengths and cyclic hardening behaviors of nickel-base alloys from base metals compromise the fatigue resistances of weld joints. In this study, alloy 182 and alloy 625 repair coupons were evaluated and compared based on isothermal low-cycle fatigue tests. Low-cycle fatigue behaviors of both weld metals and 1.25Cr-0.5Mo base metal were measured at 1.0%, 1.5% and 2.0% strain amplitudes. Test results indicate both nickel-base filler metals exhibit overmatching strength over the base metal due to cyclic hardening. Low-cycle fatigue tests of Heat Affected zone (HAZ) samples show the failures of alloy 625 weld joints occur in the base metal, while the failures of alloy 182 weld joints occur along the fusion boundary. The observations show strength mismatch and fatigue resistance are the key factors to determine failure locations of the joints. In addition, cyclic hardening coefficients based on kinematic hardening model were extracted from experimental data to simulate the cyclic behaviors of the weld joints. Finite element simulation results were shown to be consistent with experimental data at stabilized cycles. Cyclic behaviors of weld metal and base metal within a weld transition sample were calculated based on the numerical model.


2014 ◽  
Vol 936 ◽  
pp. 1361-1365
Author(s):  
Ai Li Li ◽  
Ri Gao ◽  
Ming De Sun ◽  
Xi Meng

In this paper, by experiments on the low-cycle fatigue life of groups of base metal test specimens under constant total strain control, the number of cycles to fracture failure are obtained. The measured S-N curve of base metal is established and the fitted formulas based on three low cycle fatigue life prediction models are caculated according to the test data. The relationship between the low-cycle fatigue life and strain amplitude are concluded. The results of observation show that the elastic strain effect can be negligible in the range of strain amplitudes used for the study of low-cycle fatigue (0.01-0.08). In addition, the calculation suggests that the three-parameter power function is suitable for the low-cycle fatigue life prediction of the base metal because its prediction accuracy is higher than other methods. The research provides technology supports for life prediction and engineering application of the shock absorber.


Metals ◽  
2016 ◽  
Vol 6 (8) ◽  
pp. 178 ◽  
Author(s):  
Rando Dewa ◽  
Seon Kim ◽  
Woo Kim ◽  
Eung Kim

Sign in / Sign up

Export Citation Format

Share Document