scholarly journals A Theoretical Investigation on Sound Transmission Loss through Multi-walled Plates with Air Space

Author(s):  
Toshiaki Natsuki ◽  
Jun Natsuki

In this study, an analytical model is proposed to investigate the sound transmission loss through multi-walled plates with air layers or decompression air layers, under the diffuse incidence field. Using the present approach, the influences of various parameters, such as the wall thickness, the decompressed air and the thickness of air space, on the sound transmission loss through are simulated and discussed in detail. It is seen that, due to the wave frequency of mass-air-mass resonance between double-walled glass plates, the sound transmission loss of the plates can be improved at low frequency range. The sound transmission loss tends to increase with decreasing air pressure because the sound is not transmitted through vacuum space. The design method can be used to investigate the effect of various geometric and material parameters on the sound transmission loss. The advantage of the simulation procedure is easily used for designing the layer structures with different parameter to improve the sound insulation effect.

2016 ◽  
Vol 87 (3) ◽  
pp. 261-269 ◽  
Author(s):  
Yong Yang ◽  
Binbin Li ◽  
Zhaofeng Chen ◽  
Ni Sui ◽  
Zhou Chen ◽  
...  

Glass-fiber felts have emerged as a popular material for noise reduction. This paper investigates the effect of various morphologies (micro-layer, macro-layer and air-layer) of glass-fiber felts on sound insulation. The sound transmission loss is measured by a Brüel & Kjár (B&K) impedance tube. The results show that the sound insulation of glass-fiber felts can be improved by increasing the number of macro-layers. The comparison between the macro- and micro-layer of glass-fiber felts on sound insulation is systematically carried out. Notably, the sound transmission loss of glass-fiber felts with similar areal density and thickness favors macro-layer structures over micro-layer structures. A simple model is established to explain this phenomenon. In addition, the sound transmission loss exhibits period fluctuations due to the presence of the air-layer between glass-fiber felts, which can be theoretically explained by the resonance effect. It is found that sound transmission loss can be improved by increasing the number of air-layers.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Zhifu Zhang ◽  
Weiguang Zheng ◽  
Qibai Huang

This paper studies low-frequency sound transmission loss (STL) of an infinite orthogonally rib-stiffened sandwich structure flexibly connected with periodic subwavelength arrays of finite shunted piezoelectric patches. A complete theoretical model is proposed by three steps. First, the panels and piezoelectric patches on both sides are equivalent to two homogeneous facesheets by effective medium method. Second, we take into account all inertia terms of the rib-stiffeners to establish the governing equations by space harmonic method, separating the amplitude coefficients of the equivalent facesheets through virtual work principle. Third, the expression of STL is reduced. Based on the two prerequisites of subwavelength assumption and convergence criterion, the accuracy and validity of the model are verified by finite element simulations, cited experiments, and theoretical values. In the end, parameters affecting the STL performance of the structure are studied. All of these results show that the sandwich structure can improve the low-frequency STL effectively and broaden the sound insulation bandwidth.


2020 ◽  
Vol 37 ◽  
pp. 126-133
Author(s):  
Yuan-Wei Li ◽  
Chao-Nan Wang

Abstract The purpose of this study was to investigate the sound insulation of double-leaf panels. In practice, double-leaf panels require a stud between two surface panels. To simplify the analysis, a stud was modeled as a spring and mass. Studies have indicated that the stiffness of the equivalent spring is not a constant and varies with the frequency of sound. Therefore, a frequency-dependent stiffness curve was used to model the effect of the stud to analyze the sound insulation of a double-leaf panel. First, the sound transmission loss of a panel reported by Halliwell was used to fit the results of this study to determine the stiffness of the distribution curve. With this stiffness distribution of steel stud, some previous proposed panels are also analyzed and are compared to the experimental results in the literature. The agreement is good. Finally, the effects of parameters, such as the thickness and density of the panel, thickness of the stud and spacing of the stud, on the sound insulation of double-leaf panels were analyzed.


2018 ◽  
Vol 55 (2) ◽  
pp. 64-76
Author(s):  
D. Belakova ◽  
A. Seile ◽  
S. Kukle ◽  
T. Plamus

Abstract Within the present study, the effect of hemp (40 wt%) and polyactide (60 wt%), non-woven surface density, thickness and number of fibre web layers on the sound absorption coefficient and the sound transmission loss in the frequency range from 50 to 5000 Hz is analysed. The sound insulation properties of the experimental samples have been determined, compared to the ones in practical use, and the possible use of material has been defined. Non-woven materials are ideally suited for use in acoustic insulation products because the arrangement of fibres produces a porous material structure, which leads to a greater interaction between sound waves and fibre structure. Of all the tested samples (A, B and D), the non-woven variant B exceeded the surface density of sample A by 1.22 times and 1.15 times that of sample D. By placing non-wovens one above the other in 2 layers, it is possible to increase the absorption coefficient of the material, which depending on the frequency corresponds to C, D, and E sound absorption classes. Sample A demonstrates the best sound absorption of all the three samples in the frequency range from 250 to 2000 Hz. In the test frequency range from 50 to 5000 Hz, the sound transmission loss varies from 0.76 (Sample D at 63 Hz) to 3.90 (Sample B at 5000 Hz).


2020 ◽  
Vol 26 (11-12) ◽  
pp. 899-912 ◽  
Author(s):  
Hamed Darvish Gohari ◽  
MohamdReza Zarastvand ◽  
Roohollah Talebitooti

This paper presents an analytical model to embed porous materials in a finite cylindrical shell in order to obtain the sound transmission loss coefficient. Although the circumferential modes are considered only for calculating the amount of the transmitted noise through an infinitely long cylinder, the present study employs the longitudinal modes in addition to circumferential ones to analyze the vibroacoustic performance of a simply supported cylinder subjected to the porous core based on the first order shear deformation theory. To achieve this goal, the structure is immersed in a fluid and excited by an acoustic wave. In addition, the acoustic pressures and the displacements are developed in the form of double Fourier series. Since these series consist of infinite modes, it is essential to terminate this process by considering adequate modes. Hence, the convergence checking algorithm is employed in the form of some three-dimensional configurations with respect to length, frequency and radius. Afterwards, some figures are plotted to confirm the accuracy of the present formulation. In these configurations, the obtained sound transmission loss from the present study is compared with that of the infinite one. It is shown that by increasing the length of the structure, the results are approached to sound transmission loss of the infinite shells. Moreover, a new approach is proposed to show the transverse displacement of a finite poroelastic cylinder at different frequencies. Based on the outcomes, it is found that by enhancing the length of the poroelastic cylinder, the amount of the transmitted sound into the structure is reduced at the high frequency domain. However, the sound insulation property of the structure is improved at the low frequency region when the radius of the shell is decreased.


2020 ◽  
pp. 107754632092690
Author(s):  
Zechao Li ◽  
Sizhong Chen ◽  
Zhicheng Wu ◽  
Lin Yang

The main aim of this study is to introduce an improved method for determining the sound properties of acoustic materials which is more precise than the common wavefield decomposition method and simpler than the common transfer matrix method. In the first part of the article, a group of formulae for calculating sound transmission loss is represented by combining the wavefield decomposition and transfer matrix methods. Subsequently, a formula for calculating sound absorption coefficients is derived from these formulae by definition. Furthermore, the present formulae are validated by comparing the experimental results achieved with the present formulae and those results obtained by other methods recorded in published articles. Eventually, it is demonstrated that the method can accurately measure the sound insulation performance of materials and the sound absorption properties of limp and lightweight materials.


2015 ◽  
Vol 07 (01) ◽  
pp. 1550013 ◽  
Author(s):  
C. Shen ◽  
Q. C. Zhang ◽  
S. Q. Chen ◽  
H. Y. Xia ◽  
F. Jin

In this paper, an analytical model is developed to investigate sound transmission loss characteristic of adhesively bonded metal sandwich panels with pyramidal lattice truss cores based on 3D elasticity theory. Meanwhile, practical specimen is fabricated to conduct corresponding sound insulation experiment test via a standing wave tube method. The effective elastic constant of truss cores is derived using one homogenization theory on account of equivalent strain energy. It is found that satisfactory agreement is achieved between theoretical solutions and experiment results, and damping effect of adhesive bonding interface between facesheets and core has a great impact on transmission loss. Further parameter investigations demonstrate the significant effect of the elevation and azimuth angles of the pyramidal cores, which can be conveniently changed to tailor the acoustic performance of the sandwich panels in the whole frequency range.


Sign in / Sign up

Export Citation Format

Share Document