scholarly journals Assessment of Activity Concentration of Radionuclides in Soil and Cassava Food Crop from Solid Mineral Mining Site in Ishiagu, Ivo L.G.A of Ebonyi State, Nigeria

Author(s):  
C. Mgbeokwere ◽  
C. P. Ononugbo ◽  
A. Bubu

The assessment of activity of concentration of radionuclides in soil and food crops from solid mineral mining sites at Ishiagu, in Ivo L.G.A of Ebonyi State was carried out using the necessary measuring instruments. Samples of soil and cassava crop collected from around the mining sites. The samples were analysed using gamma ray spectrometry. The average activity concentration of 226Ra, 232Th and 40K in soil samples were 12.37,16.08, and 144.29 Bqkg-1 while those for cassava were 2.81, 16.80, and 205.41 Bqkg-1. The soil/plant radionuclide transfer ratio estimated are 0.62, 2.43 and 2.51 for 226Ra, 232Th and 40K, respectively. All the radiological risk parameters estimated are relatively low. The result of this work showed that the obtained results for all samples were lower than the international accepted limit. Hence, from radiological health standpoint, the obtained values of effective doses may not pose significant threat to both human and the environment. 

2016 ◽  
Vol 44 ◽  
pp. 1660237
Author(s):  
Huda Al-Sulaiti ◽  
Tabassum Nasir ◽  
K. S. Al Mugren ◽  
N. Alkhomashi ◽  
N. Al-Dahan ◽  
...  

The goal of this study was to establish the first baseline measurements for radioactivity concentration of the artificial radionuclide [Formula: see text]Cs in soil samples collected from the Qatarian peninsula. The work focused on the determination of the activity concentrations levels of man-made radiation in 129 soil samples collected across the landscape of the State of Qatar. All the samples were collected before the most recent accident in Japan, “the 2011 Fukushima Dai-ichi nuclear power plant accident”. The activity concentrations have been measured via high-resolution gamma-ray spectrometry using a hyper-pure germanium detector situated in a low-background environment with a copper inner-plated passive lead shield. A radiological map showing the activity concentrations of [Formula: see text]Cs is presented in this work. The concentration was[Formula: see text]found to range from 0.21 to 15.41 Bq/kg. The highest activity concentration of [Formula: see text]Cs was observed in sample no. 26 in North of Qatar. The mean value was found to be around 2.15 ± 0.27 Bq/kg. These values lie within the expected range relative to the countries in the region. It is expected that this contamination is mainly due to the Chernobyl accident on 26 April 1986, but this conclusion cannot be confirmed because of the lack of data before this accident.


2021 ◽  
Vol 145 (7-8) ◽  
pp. 323-335
Author(s):  
Marina Popijač

The research on activities of <sup>137</sup>Cs and <sup>40</sup>K, which was conducted on the silver fir (Abies alba Mill.) from Lika has included sampling of the trees in the field (rings of the bole from three different heights separated into bark, growth rings, roots, needles, shoots, and the soil surrounding the cut down trees), laboratory analysis of samples using the gamma-ray spectrometry and the statistical analysis of the collected data. The radial and vertical distribution of cesium (<sup>137</sup>Cs) in trees was investigated. <sup>137</sup>Cs has contaminated forest ecosystems by remote atmospheric transport and radioactive precipitation as a result of nuclear test including the nuclear accident in Chernobyl. On a longer time scale, the variability of the <sup>137</sup>Cs distribution determined in the organisms of the silver fir depended on the half-life, while the seasonal dynamics were influenced by the degree of physiological activity and the characteristics and functions of plant tissues. The highest activity of <sup>137</sup>Cs was determined in the bark and the physiologically most active parts of the silver fir (shoots and needles). The highest activity concentration of the <sup>137</sup>Cs in the growth rings was measured in the lowest parts of the silver fir trees. This research contributed to understanding the behavior of <sup>137</sup>Cs, which entered the organisms of dominant tree species in the forest ecosystem, as well as its distribution in time and space.


EKSPLORIUM ◽  
2019 ◽  
Vol 40 (2) ◽  
pp. 115
Author(s):  
Navila Bidasari Alviandini ◽  
Muslim Muslim ◽  
Wahyu Retno Prihatiningsih ◽  
Sri Yulina Wulandari

ABSTRAKNORM (Naturally Occuring Radioactive Material) merupakan unsur radionuklida yang secara alami sudah ada dalam bumi dan kandungannya dapat meningkat dengan adanya kegiatan industri, seperti PLTU. Kegiatan PLTU menghasilkan bottom ash dan fly ash yang akan terbawa oleh angin kemudian masuk ke perairan dan mengendap pada sedimen dasar perairan. Penelitian ini bertujuan untuk mengetahui aktivitas NORM pada sedimen dasar terkait kegiatan PLTU Tanjung Jati, Jepara dan hubungannya dengan ukuran butir serta TOC (Total Organic Carbon). Pengambilan sampel dilakukan dengan metode purposive sampling. Pengukuran konsentrasi aktivitas NORM dilakukan menggunakan spektrometri sinar gama detektor HPGe, di Laboratorium Radioekologi Kelautan PTKMR-BATAN. Konsentrasi aktivitas NORM yang terdeteksi yaitu 40K berkisar 442,75–818,40 Bq.Kg-1, 232Th berkisar 99,19–212,34 Bq.Kg-1 dan 226Ra berkisar 42,42–77,77 Bq.Kg-1. Aktivitas NORM menunjukkan adanya hubungan dengan tekstur sedimen, tetapi tidak menunjukkan hubungan dengan kandungan Total Organic Carbon (TOC).ABSTRACTNORM (Naturally Occurring Radioactive Material) is a radionuclide element which naturally exists in the earth and its content can increased with the presence of industrial activities, such as the PLTU. The PLTU activities produce fly ash and bottom ash which will be carried away by the wind and then fall in the waters and settle on the bottom sediments of the waters. This study was aimed to determine the activity of NORM in bottom sediments related activities PLTU Tanjung Jati Jepara and its relationship with grain size and TOC (Total Organic Carbon). Sampling was conducted by purposive sampling method. NORM activity concentration measurements performed using gamma ray spectrometry HPGe detector, in Marine Radioecology Laboratory PTKMR-BATAN. NORM activity concentration detected is 40K ranged 442.75 to 818.40 Bq.Kg-1, 232Th ranged 99.19 to 212.34 Bq.Kg-1 and 226Ra ranged 42.42 to 77.77 Bq.Kg-1. NORM activity shows the relationship with sediment texture, but does not show a relationship with the composition of Total Organic Carbon (TOC).


Author(s):  
C. Mgbeokwere ◽  
C. P. Ononugbo ◽  
A. Bubu

Background ionizing radiation around Lead/Zinc mining sites at Ishiagu, Ebonyi State was carried out using appropriate equipment. The background ionizing radiation of the environment was determined by measuring the radiation exposure rates using Radalert-200 and Geographical Positioning System (GPS). Radiological health parameters and effective dose to different organs of the body was estimated. The average exposure rate of 0.00017mSv/h (0.017mR/h) measured was relatively higher than the world acceptable value of 0.00013mSv/h (0.013mR/h ). All the radiological risk parameters estimated are relatively high. The result of this work shows that the mining µactivities have enhanced the radiation level of Ishiagu and health status of the populace.


2014 ◽  
Vol 29 (1) ◽  
pp. 58-66 ◽  
Author(s):  
Milan Tanic ◽  
Milan Momcilovic ◽  
Jovan Kovacevic ◽  
Snezana Dragovic ◽  
Goran Bacic

The aim of this work was to estimate the health and radiation hazard due to external irradiation from terrestrial radionuclides in the Stara planina Mt. region, which is important because of past uranium mining activities on the mountain. Soil samples were collected inside the flotation processing facilities, their surroundings and more distant locations, i.e. from areas considered certainly affected, potentially affected, and unaffected by former mining and uranium ore processing activities. The radiological and health risk assessments were done by calculating the six main parameters, based on the activity concentration of 238U, 232Th, and 40K in soil samples as determined by gamma-ray spectrometry. Increased values of the risk parameters were observed only for sites where uranium ore was processed, while the location surrounding these compounds showed values that are usual for this mountain or slightly above them. Calculations of the risk parameters for the background area showed no radiation risk for the local and seasonal population. The presence of U and Th was detected in all water samples from creeks surrounding the facilities, but only in the water from the facility drainage pipe did their concentration exceed the limits given for the uranium content in drinking water. In conclusion, the results obtained in this study fall within the range of values in similar studies conducted worldwide and are below the values which can cause a significant radiation hazard.


Author(s):  
I. Hossain ◽  
N. M. Yussuf ◽  
M. A. Saeed ◽  
M. O. Alzanbaqi ◽  
H. Wagiran

This paper has explained the contamination of natural radionuclides in various water testers using gamma ray measurement which is very significant as part of health scrutiny programs to progress the ecological knowledge. Natural radioactivity was determined in five groups of water samples (rain, mine, tap, drinking and mineral) from different places at Johor, Malaysia by means of gamma-ray spectrometry tool. The annual cumulative effective doses were estimated 6.05 mSv /yr for rain, 9.49 mSv/ yr for mine, 6.39 mSv /yr for tap, 5.67 mSv /yr for drinking, and 6.01 mSv/yr for mineral water. Among the five samples, mine water gave the highest value in annual effective dose measurement. The measured data are compared with the reported value. The activity concentrations of five water samples provided that bottled drinking water was the lowest than other water samples. This research is useful to provide some information to the public about the amount of radionuclide content uranium, thorium and potassium that present in water.


Sign in / Sign up

Export Citation Format

Share Document