scholarly journals New Criterion of Robust Hܣ Stabilization for Uncertain Neutral Systems

Author(s):  
Jiyong Lu

The problems of delay-dependent robust stability and stabilization for a class of uncertain neutral systems are investigated in this paper. At first, by constructing a new Lyapunov functional and using the Lyapunov stability theory, a new delay-dependent condition which renders the system with no external disturbance and input to be asymptotically stable is obtained and given by a linear matrix inequality. Then, based on the obtained condition, a state feedback stabilize law is designed, which guarantees closed-loop neutral systems are asymptotically stable for all the permitted uncertainties when the external disturbance is naught, and it can also guarantee the closed-loop systems have  performance under the external disturbance. The model of neutral systems with both the uncertainty and the disturbance discussed in this paper has rarely been considered before.

2020 ◽  
Vol 42 (14) ◽  
pp. 2686-2697
Author(s):  
Yankai Li ◽  
Mou Chen ◽  
Tao Li ◽  
Huijiao Wang ◽  
Yu Kang

The problem of [Formula: see text] control is investigated for turbofan systems with uncertain parameters and multiple disturbances in this paper. Some disturbances with partly known information are described via an external system, and other disturbances are assumed to be [Formula: see text] norm bounded. According to the disturbance-observer-based-control (DOBC) method and resilient [Formula: see text] control technique, a robust resilient controller is designed to reject and attenuate the influence of these disturbances, and guarantees that closed-loop systems are asymptotically stable with [Formula: see text] performance. Some solvable sufficient conditions are obtained based on the linear matrix inequality (LMI) technique and Lyapunov stability theory. Finally, a simulation is presented to show the robustness and effectiveness of the developed resilient anti-disturbance [Formula: see text] control method.


2017 ◽  
Vol 40 (8) ◽  
pp. 2579-2588
Author(s):  
Hui Li ◽  
Fuqiang You ◽  
Fuli Wang

This paper studies the problem of robust fault estimation for neutral systems, which is subjected to actuator fault, constant delay and norm bounded external disturbance. Based on the fast adaptive fault estimation (FAFE) algorithm, we focus on the design of fault estimation filter that guarantees the filtering error systems to be asymptotically stable with a prescribed [Formula: see text] performance. A novel Lyapunov-Krasovskii functional is employed, which includes the information of time delay. A delay dependent criterion of robust fault estimation design is obtained, and then the proposed result has advantages over some existing results, in that it has less conservatism and it enlarges the application scope. An improved sufficient condition for the existence of such a filter is proposed in terms of the linear matrix inequality (LMI) by the Schur complements and the cone complementary linearization algorithm. Finally, an illustrative example is given to show the effectiveness of the proposed method.


2013 ◽  
Vol 467 ◽  
pp. 621-626
Author(s):  
Chen Fang ◽  
Jiang Hong Shi ◽  
Kun Yu Li ◽  
Zheng Wang

For a class of uncertain generalized discrete linear system with norm-bounded parameter uncertainties, the state feedback robust control problem is studied. One sufficient condition for the solvability of the problem and the state feedback robust controller are obtained in terms of linear matrix inequalities. The designed controller guarantees that the closed-loop systems is regular, causal, stable and satisfies a prescribed norm bounded constraint for all admissible uncertain parameters under some conditions. The result of the normal discrete system can be regarded as a particular form of our conclusion. A simulation example is given to demonstrate the effectiveness of the proposed method.


2011 ◽  
Vol 20 (04) ◽  
pp. 657-666
Author(s):  
CHOON KI AHN

In this paper, the delay-dependent state estimation problem for switched Hopfield neural networks with time-delay is investigated. Based on the Lyapunov–Krasovskii stability theory, a new delay-dependent state estimator for switched Hopfield neural networks is established to estimate the neuron states through available output measurements such that the estimation error system is asymptotically stable. The gain matrix of the proposed estimator is characterized in terms of the solution to a linear matrix inequality (LMI), which can be checked readily by using some standard numerical packages. An illustrative example is given to demonstrate the effectiveness of the proposed state estimator.


2020 ◽  
Vol 40 (4) ◽  
pp. 589-599
Author(s):  
Zhengquan Chen ◽  
Lu Han ◽  
Yandong Hou

Purpose This paper proposes a novel method of fault detection, which is based on H_/H∞ Runge–Kutta observer and an adaptive threshold for a class of closed-loop non-linear systems. The purpose of this paper is to improve the rapidity and accuracy of fault detection. Design/methodology/approach First, the authors design the H_/H∞ Runge–Kutta fault detection observer, which is used as a residual generator to decouple the residual from the input. The H_ performance index metric in the specified frequency domain is used to describe how sensitive the residual to the fault. The H∞ norm is used to describe the residual robustness to the external disturbance of the systems. The residual generator is designed to achieve the best tradeoff between robustness against unknown disturbances but sensitivity to faults, thus realizing the accurate detection of the fault by suppressing the influence of noise and disturbance on the residual. Next, the design of the H_/H∞ fault detection observer is transformed into a convex optimization problem and solved by linear matrix inequality. Then, a new adaptive threshold is designed to improve the accuracy of fault detection. Findings The effectiveness and correctness of the method are tested in simulation experiments. Originality/value This paper presents a novel approach to improve the accuracy and rapidity of fault detection for closed-loop non-linear system with disturbances and noise.


2014 ◽  
Vol 945-949 ◽  
pp. 2539-2542
Author(s):  
Hong Yang ◽  
Huan Huan Lü ◽  
Le Zhang

For the non-measurable states, a control of switched fuzzy systems is presented based on observer. Using switching technique and multiple Lyapunov function method, the fuzzy observer is built to ensure that for all allowable external disturbance the relevant closed-loop system is asymptotically stable. Moreover, switching strategy achieving system global asymptotic stability of the switched fuzzy system is given. In this model, a switching state feedback controller is presented. A simulation shows the feasibility and the effectiveness of the method.


2004 ◽  
Vol 126 (1) ◽  
pp. 201-205 ◽  
Author(s):  
De-Jin Wang

An alternative delay-dependent H∞ controller design is proposed for linear, continuous, time-invariant systems with unknown state delay. The resulting delay-dependent H∞ control criterion is obtained in terms of Park’s inequality for bounding cross term. The H∞ controller determined by a convex optimization algorithm with linear matrix inequality (LMI) constraints, guarantees the asymptotic stability of the closed-loop systems and reduces the effect of the disturbance input on the controlled output to within a prescribed level. A numerical example illustrates the effectiveness of our method.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 82 ◽  
Author(s):  
Watcharin Chartbupapan ◽  
Ovidiu Bagdasar ◽  
Kanit Mukdasai

The novel delay-dependent asymptotic stability of a differential and Riemann-Liouville fractional differential neutral system with constant delays and nonlinear perturbation is studied. We describe the new asymptotic stability criterion in the form of linear matrix inequalities (LMIs), using the application of zero equations, model transformation and other inequalities. Then we show the new delay-dependent asymptotic stability criterion of a differential and Riemann-Liouville fractional differential neutral system with constant delays. Furthermore, we not only present the improved delay-dependent asymptotic stability criterion of a differential and Riemann-Liouville fractional differential neutral system with single constant delay but also the new delay-dependent asymptotic stability criterion of a differential and Riemann-Liouville fractional differential neutral equation with constant delays. Numerical examples are exploited to represent the improvement and capability of results over another research as compared with the least upper bounds of delay and nonlinear perturbation.


2014 ◽  
Vol 556-562 ◽  
pp. 4386-4390
Author(s):  
Zhao Ping Yuan

This paper is concerned with the stabilization problem for fuzzy Markovian jumping systems with distributed time delay. First, fuzzy Markovian jumping systems with distributed time delay are peoposed. Second, a novel criterion of delay-dependent robust stabilization for fuzzy Markovian jumping systems is established in terms of linear matrix inequalities (LMIs) by using Lyapunov stability theory and free-weighting matrix method. When these LMIS are feasible, an explicit expression of a desired adjustable state feedback controller is given. Based on the obtained criterion, the introduced controller ensures the overall closed-loop system asymptotically stable in mean square sense for all admissible uncertainties and time delay.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
F. Yıldız Tascikaraoglu ◽  
I. B. Kucukdemiral ◽  
J. Imura

In this study, design of a delay-dependent type moving horizon state-feedback control (MHHC) is considered for a class of linear discrete-time system subject to time-varying state delays, norm-bounded uncertainties, and disturbances with bounded energies. The closed-loop robust stability and robust performance problems are considered to overcome the instability and poor disturbance rejection performance due to the existence of parametric uncertainties and time-delay appeared in the system dynamics. Utilizing a discrete-time Lyapunov-Krasovskii functional, some delay-dependent linear matrix inequality (LMI) based conditions are provided. It is shown that if one can find a feasible solution set for these LMI conditions iteratively at each step of run-time, then we can construct a control law which guarantees the closed-loop asymptotic stability, maximum disturbance rejection performance, and closed-loop dissipativity in view of the actuator limitations. Two numerical examples with simulations on a nominal and uncertain discrete-time, time-delayed systems, are presented at the end, in order to demonstrate the efficiency of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document