scholarly journals Physiological Variations in Cucurbita moschata Duch. Ex. Poir Due to a Nigerian Strain of Moroccan Watermelon Virus: Lagenaria breviflora Isolate

Author(s):  
A. A. J. Mofunanya ◽  
E. A. Effa ◽  
D. O. Etim ◽  
F. A. Akomaye ◽  
A. O. Damian

Aim: Physiological variations in Cucurbita moschata due to infection with a Nigerian strain of Moroccan watermelon virus (MWMV): Lagenaria breviflora isolate was studied. Study Design: Randomized block design was used. Place and Duration of Study: Botany Department, University of Calabar, Calabar, Nigeria between March and May, 2015. Methodology: Seeds of C. moschata were sown, on germination inoculated with the virus and analyzed for possible variations between healthy and inoculated plants. Results: Results analysis revealed increase in all amino acids investigated. Highest significant (P=0.05) percentage variation in amino acids of inoculated and healthy were -40.0% for aspartic acid, -36.1% (histidine), -29.7% (proline), -28.8% (lysine), -23.3% (glysine), -16.6% (phenylalanine) and -12.6% (glutamic acid). Infection of C. moschata with a Nigerian Strain of MWMV: Lagenaria breviflora isolate caused significant decrease in leaf nitrogen and relative water content of inoculated plants compared to the healthy. Highest percentage decrease in leaf nitrogen was 40.7% at 2 weeks after inoculation (WAI) and lowest of 25.0% at 10 WAI. The virus caused decrease in relative water content of 29.6% at 6 WAI. Activity of oxidative stress enzymes: peroxidase (POD) and polyphenol oxidase (PPO) and enzymes of the oxidative pentose phosphate pathway: glucose-6-phosphate dehydrogenase (6PGdH) and 6-phosphogluconic acid dehydrogenase (G6PdH) were significantly (P=0.05) increased in infected C. moschata- MWMV plant. Enzymes activity was significantly higher in inoculated than in healthy plants at all stages of growth with decrease at later periods for both inoculated and healthy plants. Percentage increase in POD, PPO, G6PdH and 6PGdH activity due to infection at 8 WAI had values of -40.5%, -46.7%, -98.9% and -89.1% respectively. Conclusion: The Nigerian strain of MWMV: Lagenaria breviflora isolate caused significant variations with increase and decrease in biochemical and physiological components of C. moschata affecting its growth and yield.

2019 ◽  
Vol 13 ((03) 2019) ◽  
pp. 444-451
Author(s):  
Kerolém Prícila Sousa Cardoso ◽  
Susana Silva Conceição ◽  
Ana Ecídia de Araújo Brito ◽  
Jéssica Taynara da Silva Martins ◽  
Liliane Corrêa Machado ◽  
...  

We aimed to evaluate the changes in biochemical metabolism generated by salt stress and to investigate the effect of brassinosteroids in mitigating of this stress on two cultivars of Vigna unguiculata L. We used a completely randomized experimental design in a 2 x 3 x 3 factorial scheme, using two cultivars of cowpea (BRS Guariba and BR3 Tracuateua - moderately tolerant and sensitive to salinity, respectively), three concentrations of brassinosteroids (0, 0.2 and 0.4 μM Br) and three concentrations of NaCl (0 , 50 and 100 mM NaCl), with four replicates. The following evaluations were carried out: relative water content, electrolyte leakage, nitrate levels, nitrate reductase activity, free ammonium, total soluble amino acids, soluble proteins, glycine betaine and proline. The results showed that salinity at 100 mM affected the nitrate reductase enzyme activity, the relative water content, total soluble amino acids and soluble proteins for cultivars BR3 Tracuateua, and BRS Guariba, but the 24-epibrassinolid attenuated the effects of salinity for these variables. The concentration of 0.2 μM of Br increased 55% and 20% in proline and glycine betaine contents, respectively, in both of cultivars. The plants under stress saline and 0.2 mM of 24-epibrassinolid, presented 42% and 58% reductions in electrolyte leakage of BR3 Tracuateua and BRS Guariba cultivars, respectively. The concentrations of ammonium were slightly varied. Therefore, the application of 0.2 μM of 24-epibrassinolid caused a greater acclimatization of the cultivars, being the BR3 Tracuateua (sensitive to salt) cultivar more expressive in most treatments.


2010 ◽  
Vol 7 (1) ◽  
Author(s):  
Saraswati Prabawardani

<!--[if gte mso 9]><xml> <w:WordDocument> <w:View>Normal</w:View> <w:Zoom>0</w:Zoom> <w:PunctuationKerning /> <w:ValidateAgainstSchemas /> <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid> <w:IgnoreMixedContent>false</w:IgnoreMixedContent> <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText> <w:Compatibility> <w:BreakWrappedTables /> <w:SnapToGridInCell /> <w:WrapTextWithPunct /> <w:UseAsianBreakRules /> <w:DontGrowAutofit /> <w:UseFELayout /> </w:Compatibility> <w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel> </w:WordDocument> </xml><![endif]--><!--[if gte mso 9]><xml> <w:LatentStyles DefLockedState="false" LatentStyleCount="156"> </w:LatentStyles> </xml><![endif]--> <!--[if gte mso 10]> <mce:style><! /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} --> <!--[endif]--> <p class="MsoNormal" style="text-align: justify;"><span style="font-size: 10pt;">The measurement of plant water status such as leaf water potential (LWP) and leaf relative water content (RWC) is important part of understanding plant physiology and biomass production. Preliminary study was made to determine the optimum amount of leaf abrasion and equilibration time of sweet potato leaf inside the thermocouple psychrometer chambers. Based on the trial, the standard equilibration time curve of a Peltier thermocouple for sweet potato leaf was between 2 and 3 hours. To increase the water vapour conductance across the leaf epidermis the waxy leaf cuticle should be removed or broken by abrasion. The result showed that 4 times leaf rubbings was accepted as the most effective way to increase leaf vapour conductance of sweet potato in the psychrometer chambers. In calculating the leaf relative water content, unstressed water of sweet potato leaves require 4 hours imbibition, whereas water stressed of sweet potato leaves require 5 to 6 hours to reach the saturation time. Either leaf water potential or relative water content can be used as a parameter for plant water status in sweet potato.</span><span style="font-size: 10pt;"> </span></p>


Weed Science ◽  
2015 ◽  
Vol 63 (4) ◽  
pp. 928-935 ◽  
Author(s):  
Sarah T. Berger ◽  
Jason A. Ferrell ◽  
Diane L. Rowland ◽  
Theodore M. Webster

Palmer amaranth is a troublesome weed in cotton production. Yield losses of 65% have been reported from season-long Palmer amaranth competition with cotton. To determine whether water is a factor in this system, experiments were conduced in 2011, 2012, and 2013 in Citra, FL, and in Tifton, GA. In 2011, infrequent rainfall lead to drought stress. The presence of Palmer amaranth resulted in decreased soil relative water content up to 1 m in depth. Cotton stomatal conductance (gs) was reduced up to 1.8 m from a Palmer amaranth plant. In 2012 and 2013 higher than average rainfall resulted in excess water throughout the growing season. In this situation, no differences were found in soil relative water content or cottongsas a function of proximity to Palmer amaranth. A positive linear trend was found in cotton photosynthesis and yield; each parameter increased as distance from Palmer amaranth increased. Even in these well-watered conditions, daily water use of Palmer amaranth was considerably higher than that of cotton, at 1.2 and 0.49 g H20 cm−2d−1, respectively. Although Palmer amaranth removed more water from the soil profile, rainfall was adequate to replenish the profile in 2 of the 3 yr of this study. However, yield loss due to Palmer amaranth was still observed despite no change ings, indicating other factors, such as competition for light or response to neighboring plants during development, are driving yield loss.


2021 ◽  
Vol 53 (4) ◽  
Author(s):  
Juan José Reyes-Pérez ◽  
Bernardo Murillo-Amador ◽  
Alejandra Nieto-Garibay ◽  
Luis G. Hernández-Montiel ◽  
Francisco H. Ruiz-Espinoza ◽  
...  

2012 ◽  
Vol 32 (2) ◽  
pp. 366-373 ◽  
Author(s):  
María Roberta Ansorena ◽  
María Victoria Agüero ◽  
María Grabriela Goñi ◽  
Sara Roura ◽  
Alejandra Ponce ◽  
...  

During postharvest, lettuce is usually exposed to adverse conditions (e.g. low relative humidity) that reduce the vegetable quality. In order to evaluate its shelf life, a great number of quality attributes must be analyzed, which requires careful experimental design, and it is time consuming. In this study, the modified Global Stability Index method was applied to estimate the quality of butter lettuce at low relative humidity during storage discriminating three lettuce zones (internal, middle, and external). The results indicated that the most relevant attributes were: the external zone - relative water content, water content , ascorbic acid, and total mesophilic counts; middle zone - relative water content, water content, total chlorophyll, and ascorbic acid; internal zone - relative water content, bound water, water content, and total mesophilic counts. A mathematical model that takes into account the Global Stability Index and overall visual quality for each lettuce zone was proposed. Moreover, the Weibull distribution was applied to estimate the maximum vegetable storage time which was 5, 4, and 3 days for the internal, middle, and external zone, respectively. When analyzing the effect of storage time for each lettuce zone, all the indices evaluated in the external zone of lettuce presented significant differences (p < 0.05). For both, internal and middle zones, the attributes presented significant differences (p < 0.05), except for water content and total chlorophyll.


2015 ◽  
Vol 10 (4) ◽  
pp. 208 ◽  
Author(s):  
Lorenzo Barbanti ◽  
Ahmad Sher ◽  
Giuseppe Di Girolamo ◽  
Elio Cirillo ◽  
Muhammad Ansar

A better understanding of plant mechanisms in response to drought is a strong premise to achieving high yields while saving unnecessary water. This is especially true in the case of biomass crops for non-food uses (energy, fibre and forage), grown with limited water supply. In this frame, we investigated growth and physiological response of two genotypes of biomass sorghum (<em>Sorghum bicolor</em> (L.) Moench) to contrasting levels of soil moisture in a pot experiment carried out in a greenhouse. Two water regimes (high and low water, corresponding to 70% and 30% field capacity) were applied to JS-2002 and Trudan-8 sorghum genotypes, respectively bred for dry sub-tropical and mild temperate conditions. Two harvests were carried out at 73 and 105 days after seeding. Physiological traits (transpiration, photosynthesis and stomatal conductance) were assessed in four dates during growth. Leaf water potential, its components and relative water content were determined at the two harvests. Low watering curbed plant height and aboveground biomass to a similar extent (ca. 􀀀70%) in both genotypes. JS-2002 exhibited a higher proportion of belowground to aboveground biomass, <em>i.e</em>., a morphology better suited to withstand drought. Despite this, JS-2002 was more affected by low water in terms of physiology: during the growing season, the average ratio in transpiration, photosynthesis and stomatal conductance between droughty and well watered plants was, respectively, 0.82, 0.80 and 0.79 in JS-2002; 1.05, 1.08 and 1.03 in Trudan-8. Hence Trudan-8 evidenced a ca. 20% advantage in the three traits. In addition, Trudan-8 could better exploit abundant moisture (70% field capacity), increasing aboveground biomass and water use efficiency. In both genotypes, drought led to very low levels of leaf water potential and relative water content, still supporting photosynthesis. Hence, both morphological and physiological characteristics of sorghum were involved in plant adaptation to drought, in accordance with previous results. Conversely, the common assumption that genotypes best performing under wet conditions are less suited to face drought was contradicted by the results of the two genotypes in our experiment. This discloses a potential to be further exploited in programmes of biomass utilization for various end uses, although further evidence at greenhouse and field level is needed to corroborate this finding.


Sign in / Sign up

Export Citation Format

Share Document