Interface between Hydropower Generation and Other Water Uses in the Piabanha River Basin in Brazil

2016 ◽  
Vol 14 (5) ◽  
pp. 1-10 ◽  
Author(s):  
Diego Chiappori ◽  
Mônica Hora ◽  
José Azevedo
2017 ◽  
Vol 21 (12) ◽  
pp. 6275-6288 ◽  
Author(s):  
Hassaan Furqan Khan ◽  
Y. C. Ethan Yang ◽  
Hua Xie ◽  
Claudia Ringler

Abstract. There is a growing recognition among water resource managers that sustainable watershed management needs to not only account for the diverse ways humans benefit from the environment, but also incorporate the impact of human actions on the natural system. Coupled natural–human system modeling through explicit modeling of both natural and human behavior can help reveal the reciprocal interactions and co-evolution of the natural and human systems. This study develops a spatially scalable, generalized agent-based modeling (ABM) framework consisting of a process-based semi-distributed hydrologic model (SWAT) and a decentralized water system model to simulate the impacts of water resource management decisions that affect the food–water–energy–environment (FWEE) nexus at a watershed scale. Agents within a river basin are geographically delineated based on both political and watershed boundaries and represent key stakeholders of ecosystem services. Agents decide about the priority across three primary water uses: food production, hydropower generation and ecosystem health within their geographical domains. Agents interact with the environment (streamflow) through the SWAT model and interact with other agents through a parameter representing willingness to cooperate. The innovative two-way coupling between the water system model and SWAT enables this framework to fully explore the feedback of human decisions on the environmental dynamics and vice versa. To support non-technical stakeholder interactions, a web-based user interface has been developed that allows for role-play and participatory modeling. The generalized ABM framework is also tested in two key transboundary river basins, the Mekong River basin in Southeast Asia and the Niger River basin in West Africa, where water uses for ecosystem health compete with growing human demands on food and energy resources. We present modeling results for crop production, energy generation and violation of eco-hydrological indicators at both the agent and basin-wide levels to shed light on holistic FWEE management policies in these two basins.


2013 ◽  
Vol 17 (19) ◽  
pp. 1-22 ◽  
Author(s):  
G. T. Aronica ◽  
B. Bonaccorso

Abstract In recent years, increasing attention has been paid to hydropower generation, since it is a renewable, efficient, and reliable source of energy, as well as an effective tool to reduce the atmospheric concentrations of greenhouse gases resulting from human activities. At the same time, however, hydropower is among the most vulnerable industries to global warming, because water resources are closely linked to climate changes. Indeed, the effects of climate change on water availability are expected to affect hydropower generation with special reference to southern countries, which are supposed to face dryer conditions in the next decades. The aim of this paper is to qualitatively assess the impact of future climate change on the hydrological regime of the Alcantara River basin, eastern Sicily (Italy), based on Monte Carlo simulations. Synthetic series of daily rainfall and temperature are generated, based on observed data, through a first-order Markov chain and an autoregressive moving average (ARMA) model, respectively, for the current scenario and two future scenarios at 2025. In particular, relative changes in the monthly mean and standard deviation values of daily rainfall and temperature at 2025, predicted by the Hadley Centre Coupled Model, version 3 (HadCM3) for A2 and B2 greenhouse gas emissions scenarios, are adopted to generate future values of precipitation and temperature. Synthetic series for the two climatic scenarios are then introduced as input into the Identification of Unit Hydrographs and Component Flows from Rainfall, Evapotranspiration and Streamflow Data (IHACRES) model to simulate the hydrological response of the basin. The effects of climate change are investigated by analyzing potential modification of the resulting flow duration curves and utilization curves, which allow a site's energy potential for the design of run-of-river hydropower plants to be estimated.


2013 ◽  
Vol 31 (2) ◽  
pp. 181-192 ◽  
Author(s):  
X. S. Ai ◽  
S. Sandoval-Solis ◽  
H. E. Dahlke ◽  
B. A. Lane

2010 ◽  
Vol 14 (10) ◽  
pp. 1895-1908 ◽  
Author(s):  
Q. Goor ◽  
C. Halleux ◽  
Y. Mohamed ◽  
A. Tilmant

Abstract. The upper Blue Nile River Basin in Ethiopia is a largely untapped resource despite its huge potential for hydropower generation and irrigated agriculture. Controversies exist as to whether the numerous infrastructural development projects that are on the drawing board in Ethiopia will generate positive or negative externalities downstream in Sudan and Egypt. This study attempts at (1) examining the (re-)operation of infrastructures, in particular the proposed reservoirs in Ethiopia and the High Aswan Dam and (2) assessing the economic benefits and costs associated with the storage infrastructures in Ethiopia and their spatial and temporal distribution. To achieve this, a basin-wide integrated hydro-economic model has been developed. The model integrates essential hydrologic, economic and institutional components of the river basin in order to explore both the hydrologic and economic consequences of various policy options and planned infrastructural projects. Unlike most of the deterministic economic-hydrologic models reported in the literature, a stochastic programming formulation has been adopted in order to: (i) understand the effect of the hydrologic uncertainty on management decisions, (ii) determine allocation policies that naturally hedge against the hydrological risk, and (iii) assess the relevant risk indicators. The study reveals that the development of four mega dams in the upper part of the Blue Nile Basin would change the drawdown refill cycle of the High Aswan Dam. Should the operation of the reservoirs be coordinated, they would enable an average annual saving of at least 2.5 billion m3 through reduced evaporation losses from the Lake Nasser. Moreover, the new reservoirs (Karadobi, Beko-Abo, Mandaya and Border) in Ethiopia would have significant positive impacts on hydropower generation and irrigation in Ethiopia and Sudan: at the basin scale, the annual energy generation is boosted by 38.5 TWh amongst which 14.2 TWh due to storage. Moreover, the regulation capacity of the above mentioned reservoirs would enable an increase of the Sudanese irrigated area by 5.5%.


Author(s):  
Y. Jia ◽  
N. Wei ◽  
C. Hao ◽  
J. You ◽  
C. Niu ◽  
...  

Abstract. The water resources situation in the water-stressed Weihe River Basin, China, is more serious now than ever before because of a decrease in water resources and socio-economic development. A "Zero increase of socio-economic water use" in recent years gives people a wrong understanding and conceals the water crisis in the basin because the socio-economic water consumption has actually increased. Water use for the hydro-ecological system has been greatly reduced by a decrease in water resources and socio-economic water consumption increase. New concepts of hierarchical water uses for every sector and water consumption control are suggested for coordinating water uses of the socio-economy and ecosystems in the water-stressed basin. The traditional water resources allocation and regulation in China usually set up a priority sequence for water use sectors. Generally speaking, domestic water use has the highest priority and a highest guarantee rate, followed by industrial water use, irrigation and lastly ecological water use. The concept of hierarchical water use for every sector is to distinguish the water use of every sector into minimum part, appropriate part, and expected extra part with different guarantee rates, and the minimum parts of all sectors should be first guaranteed. By applying a water allocation model, we compared the water allocation results of the traditional approach and the newly suggested approach. Although further study is desired, the results are believed to be of an important referential value to sustainable development in the basin.


Sign in / Sign up

Export Citation Format

Share Document