Comparison of in vitro Digestibility and Rumen Fluid Characteristics between the Tithonia (Tithonia diversifolia) with Elephant Grass (Pennisetum purpureum): An Advanced Study

Author(s):  
Novirman Jamarun ◽  
Roni Pazla ◽  
Mardiati Zain ◽  
. Arief
2019 ◽  
Vol 40 (5) ◽  
pp. 2045 ◽  
Author(s):  
Flávio Pinto Monção ◽  
Marco Aurélio Moraes Soares Costa ◽  
João Paulo Sampaio Rigueria ◽  
Marielly Maria Almeida Moura ◽  
Vicente Ribeiro Rocha Júnior ◽  
...  

The objective was to evaluate the productivity, chemical composition, ruminal degradability of dry matter and digestibility of BRS capiaçu grass (Pennisetum purpureum Schum.) managed at five regrowth ages. A completely randomized design with ten replications was used in the BRS capiaçu elephant grass subjected to five cutting intervals (30, 60, 90, 120 and 150 days) in the summer, making a total of 50 plots with a useful area of 4 x 2 m. There were daily increases in the dry matter production in the order of 382 kg ha-1, with 49,859 kg ha-1 being produced at 150 regrowth days. The dry matter content and organic matter linearly increased (P < 0.01) at different regrowth ages. The crude protein content, in vitro dry matter digestibility and in vitro digestibility of neutral detergent fiber linearly reduced (P < 0.01) 0.037%, 0.196% and 0.256% per day, respectively. Potential degradability of dry matter decreased from 68.9% at 30 days to 44.7% at 150 regrowth days (0.194 percentage units per day). The rate of degradation of fraction B 'c' was not modified (P = 0.94), averaging 1.46% hour-1. In the cultivation of BRS capiaçu elephant grass in the summer season, in the northern region of Minas Gerais, the age for harvesting between 90 and 120 days of regrowth is recommended.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 55-56
Author(s):  
Noheli Gutierrez ◽  
Jamie A Boyd

Abstract A study was conducted to evaluate effects of increasing concentration of food grade glycerol on rumen environment and nutrient digestibility. Three ruminally cannulated Jersey steers were used in this study. The study was conducted from March to May 2019. Experimental design was a 3x3 Latin square with a 2wk adjustment period followed by a 1wk collection period. Diet was coastal bermudagrass hay based. Different forage types were introduced in the incubation process to evaluate digestibility. Glycerol was administered once a day at 0, 15, or 20% of DMI (dry matter intake). dNDF (digestible NDF) and dDM (digestible dry matter) was determined using an ANKOM Daisy II incubator inoculated with 200g fresh rumen fluid and incubated for 12, 24, 48 and 72 h at 39°C. Each vessel contained ground forage samples in filter bags in triplicate. After incubation, filter bags were rinsed with cold water and dried for 24h in a 55°C forced air oven. Data were analyzed using the Proc MIXED procedure of SAS version 9.4. There was no difference dNDF in effect of different levels of glycerol between forage types by diet. But a numerical tendency was observed that dNDF was decreased at 20% inclusion rates in comparison to 0 and 15% inclusion of glycerol in the diet. Neither steer nor run was significantly different in the study. However as expected digestibility over time was significantly different (P &lt; 0.001). A significant increase was observed in DMI with the increased levels of glycerol in the diet (P = 0.003), both the 15% and 20% levels of glycerol increased in DMI in comparison to the control (0%). It appears based on these study results that digestibility may be inhibited, as levels of dietary glycerol increase in the diet and more work needs to be done to find the optimal level of glycerol supplementation.


2018 ◽  
Vol 19 (3) ◽  
pp. 277-286 ◽  
Author(s):  
Cintia Mirely de Araujo ◽  
Fernanda Gomes Bezerra da Silva ◽  
Daniela Pionório Vilaronga Castro ◽  
Daniel Ribeiro Menezes ◽  
Mário Adriano Ávila Queiroz ◽  
...  

SUMMARY This study evaluated the influence of the propolis ethanolic extract (PEE) on gas production and in vitro degradability of sheep diets. Five experimental diets (treatments) were evaluated: without addition of PEE; 6 mL PEE; 12 mL PEE; 24 mL PEE and 36 mL PEE/kg concentrate. The experimental diet consisted of 50% elephant grass (Pennisetum purpureum) and 50% concentrate. There was a quadratic effect (P <0.05) for the volumes of total gas production (Vt), gases produced by the rapid degradation fractions (Vf1), and for in vitro degradability at 120 hours (Deg120), where the lowest values of Vt, Vf1 and Deg120, were found for the inclusion of 9.4 mL PEE/kg concentrate. Gas production by fermentation of the slow degradation fraction (Vf2) presented a mean of 25 mL/g DM (P <0.05). The colonization time of food particles (λ) significantly reduced (P<0.05) with increasing inclusion of PEE. Thus, it can be concluded that the PEE up to the inclusion of 9.4 mL/kg concentrate was efficient in inhibiting in vitro total gas production and from the fractions of rapid degradation by 9.9 and 15.3%, respectively, in addition to promoting a reduction of 5.3% in degradability after 120 h incubation in diets with a concentrate: forage ratio of 50:50. Thus, the inhibition in gas production was proportionally greater than the reduction of degradability.


Sign in / Sign up

Export Citation Format

Share Document