Debye Temperature and Elastic Constants of Geophysical Minerals: Theoretical Prediction

Author(s):  
Brijesh K. Pandey ◽  
Chandra K. Singh ◽  
Anjani K. Pandey
2019 ◽  
Vol 33 (08) ◽  
pp. 1950093 ◽  
Author(s):  
A. Afaq ◽  
Abu Bakar ◽  
M. Rizwan ◽  
M. Aftab Fareed ◽  
H. Bushra Munir ◽  
...  

In this study, thermo-elastic and lattice dynamic properties of XMgAl (X = Li, Na) half-Heusler compounds are investigated using density functional theory implemented in WIEN2k and Quantum ESPRESSO codes. Generalized gradient approximation (GGA) as an exchange correlation function has been used in Kohn–Sham equations. Firstly, the structure of these Heusler compounds is optimized and then these optimized parameters are used to find three elastic constants [Formula: see text], [Formula: see text] and [Formula: see text] for [Formula: see text] type structures. Three elastic constants are then used to determine different elastic moduli like bulk modulus, shear modulus, Young’s modulus and other mechanical parameters like Pugh’s ratio, Poisson’s ratio, anisotropic ratio, sound velocities, Debye temperature and melting temperature. On behalf of these mechanical parameters, the brittle/ductile nature and isotropic/anisotropic behavior of the materials has been studied. Different regions of vibrational modes in the materials are also discussed on behalf of Debye temperature calculations. The vibrational properties of the half-Heusler compounds are computed using Martins–Troullier pseudo potentials implemented in Quantum ESPRESSO. The phonon dispersion curves and phonon density of states in first Brillion zone are obtained and discussed. Reststrahlen band of LiMgAl is found greater than NaMgAl.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2015 ◽  
Author(s):  
Xianshi Zeng ◽  
Rufang Peng ◽  
Yanlin Yu ◽  
Zuofu Hu ◽  
Yufeng Wen ◽  
...  

Using first-principles calculations based on density functional theory, the elastic constants and some of the related physical quantities, such as the bulk, shear, and Young’s moduli, Poisson’s ratio, anisotropic factor, acoustic velocity, minimum thermal conductivity, and Debye temperature, are reported in this paper for the hexagonal intermetallic compound Ti 3 Al. The obtained results are well consistent with the available experimental and theoretical data. The effect of pressure on all studied parameters was investigated. By the mechanical stability criteria under isotropic pressure, it is predicted that the compound is mechanically unstable at pressures above 71.4 GPa. Its ductility, anisotropy, and Debye temperature are enhanced with pressure.


Crystals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 497 ◽  
Author(s):  
Cai Chen ◽  
Lili Liu ◽  
Yufeng Wen ◽  
Youchang Jiang ◽  
Liwan Chen

The pressure dependence of the lattice and elastic constants of the orthorhombic YBa 2 Cu 3 O 7 are firstly investigated using the first principles calculations based on the density functional theory. The calculated lattice parameters at 0 GPa are in agreement with the available experimental data. By the elastic stability criteria under isotropic pressure, it is predicted that YBa 2 Cu 3 O 7 with and orthorhombic structure is mechanically stable under pressure up to 100 GPa. On the basis of the elastic constants, Pugh’s modulus ratio, Poisson’s ratio, elastic anisotropy, Debye temperature, and the minimum thermal conductivity of YBa 2 Cu 3 O 7 under pressure up to 100 GPa are further investigated. It is found that its ductility, Debye temperature, and minimum thermal conductivity increase with pressure.


2016 ◽  
Vol 5 (1) ◽  
pp. 7
Author(s):  
Salah Daoud

The mechanical behavior, sound velocities and Debye temperature of beryllium-selenide (BeSe) semiconductor under pressure up to 50 GPa have been estimated using the structural parameters and elastic constants of Fanjie Kong and Gang Jiang (Physica B 404 (2009) 3935-3940). The Pugh ratio, the directional dependence of elastic wave velocity, the longitudinal, transverse and average sound velocities, and the Debye temperature are successfully predicted and analyzed in comparison with the available theoretical data. The analysis of the Pugh ratio indicates that this compound is prone to brittle behavior. Our obtained results of the longitudinal, transverse and average sound velocities at high pressure indicate that these of Kong and Jiang (Physica B 404 (2009) 3935-3940) are not correctly predicted.


1970 ◽  
Vol 48 (10) ◽  
pp. 1270-1271 ◽  
Author(s):  
René Wanner

Approximation methods for calculating the Debye temperature are compared with an exact numerical integration by computer to complement a paper by Konti and Varshni. Except for the alkali metals the agreement is about 0.1%.


Author(s):  
Ashok K. Ahirwar ◽  
Mahendra Aynyas ◽  
Sankar P. Sanyal

The crystal structural, mechanical and thermal properties of UXLa1-XS compound with different concentrations (x= 0.00, 0.08 and 0.40) are investigated using modified inter-ionic potential theory (MIPT), which parametrically includes the effect of coulomb screening by the delocalized f-electrons. Our calculated values of phase transition pressure, bulk modulus and volume change are agree well with the theoretical and experimental data. We have also calculated the second order elastic constants and Debye temperature of these three concentrations.


2008 ◽  
Vol 22 (22) ◽  
pp. 2063-2076 ◽  
Author(s):  
A. BOUHEMADOU

Using ab initio calculations, we have studied the structural and elastic properties of M 2 InC , with M = Sc , Ti , V , Zr , Nb , Hf and Ta . Geometrical optimization of the unit cell is in agreement with the available experimental data. We have observed a quadratic dependence of the lattice parameters versus the applied pressure. The elastic constants are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young's moduli and Poisson's ratio for ideal polycrystalline M 2 InC aggregates. We estimated the Debye temperature of M 2 InC from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of Sc 2 InC , Ti 2 InC , V 2 InC , Zr 2 InC , Nb 2 InC , Hf 2 InC and Ta 2 InC compounds, and it still awaits experimental confirmation.


Sign in / Sign up

Export Citation Format

Share Document