scholarly journals Optimum Process Parameters for Activated Carbon Production from Rice Husk for Phenol Adsorption

Author(s):  
Iheanacho Chamberlain Ositadinma ◽  
Nwabanne Joseph Tagbo ◽  
Onu Chijioke Elijah

Aim: The determination of optimum process parameters in the production of activated carbon from rice husk for the uptake of phenol from aqueous solution was the focus of this work. Study Design: The optimization was designed using response surface methodology. Methodology: Central composite design (CCD) was used to generate the design matrix and analyze the result obtained. Carbonization temperature, percentage acid concentration and carbonization time were the factors considered. Tetraoxophosphoric acid (H3PO4) was employed in the activation process. The surface area was determined using the Brunauer-Emmet-Teller (BET) nitrogen adsorption method. Results: The result indicated the optimum process conditions as carbonization temperature of 575ºC, time of 240 minutes and 45 percentage acid concentration. This gave 96.5% adsorption efficiency of phenol from aqueous solution. There was good agreement between the experimental values and the predicted values. The BET surface area of the activated carbon was 471.1 m2/s. Conclusion: This work has optimized the process conditions for activated carbon production from rice husk for effective adsorption of phenol from wastewater.

2013 ◽  
Vol 47 (4) ◽  
pp. 347-364 ◽  
Author(s):  
MS Islam ◽  
MA Rouf

A review of the production of activated carbons from waste biomass has been presented. The effects of various process parameters on the pyrolysis stage have been reviewed. Influences of activating conditions, physical and chemical, on the active carbon properties have been discussed. Under certain process conditions several active carbons with BET surface areas, ranging between 250 and 2410 m2/g and pore volumes of 0.022 and 91.4 cm3/g, have been produced. A comparison in characteristics and uses of activated carbons from waste biomass with those of commercial carbons has been made. Waste biomass being highly efficient, low cost and renewable sources of activated carbon production. Bangladesh J. Sci. Ind. Res. 47(4), 347-364, 2012 DOI: http://dx.doi.org/10.3329/bjsir.v47i4.14064


2018 ◽  
Vol 21 (4) ◽  
pp. 171-174 ◽  
Author(s):  
Galih N. R. Pargiman ◽  
Arnelli Arnelli ◽  
Yayuk Astuti

Research has been conducted on the adsorption of HDTMA-Br surfactant by rice husk-activated carbon with variation of carbonization temperature and concentration of HDTMA-Br. This study aims to produce surfactant modified activated carbon (SMAC), therefore it is necessary to determine the influence of carbonization temperature to the adsorption capability of activated carbon on HDTMA-Br surfactant by identifying the amount of HDTMA-Br surfactant absorbed, to characterize the characters of carbon, activated carbon and activated carbon adsorbing surfactant using FTIR and SAA. Carbonization was carried out by pyrolysis with temperature variations of 300, 350 and 400°C. The carbon produced was activated using 60% H3PO4 for 1 hour. After that, the activated carbon was applied to adsorb HDTMA-Br surfactant by varying the concentration that were 300, 1100, 1900, 2700, 3500 and 4300 ppm. The results showed that HDTMA-Br adsorbed tended to increase by increasing the concentration of surfactant. In addition, the best carbonization temperature showing high adsorption capability of activated carbon was at 300°C. FTIR spectra of activated carbon showed the presence of P = O peak; at the SMAC sampel there was peak of N-(CH3)3 with different intensities in three samples. Moreover, SAA analysis showed that the surface area of activated carbon increased compared to carbon and slightly decreased after the activated carbon absorbed HDTMA-Br.


2013 ◽  
Vol 16 (1) ◽  
pp. 22-31
Author(s):  
Phung Thi Kim Le ◽  
Kien Anh Le

Agricultural wastes are considered to be a very important feedstock for activated carbon production as they are renewable sources and low cost materials. This study present the optimize conditions for preparation of durian peel activated carbon (DPAC) for removal of methylene blue (MB) from synthetic effluents. The effects of carbonization temperature (from 673K to 923K) and impregnation ratio (from 0.2 to 1.0) with potassium hydroxide KOH on the yield, surface area and the dye adsorbed capacity of the activated carbons were investigated. The dye removal capacity was evaluated with methylene blue. In comparison with the commercial grade carbons, the activated carbons from durian peel showed considerably higher surface area especially in the suitable temperate and impregnation ratio of activated carbon production. Methylene blue removal capacity appeared to be comparable to commercial products; it shows the potential of durian peel as a biomass source to produce adsorbents for waste water treatment and other application. Optimize condition for preparation of DPAC determined by using response surface methodology was at temperature 760 K and IR 1.0 which resulted the yield (51%), surface area (786 m2/g), and MB removal (172 mg/g).


2004 ◽  
Vol 49 (1) ◽  
pp. 139-146 ◽  
Author(s):  
S. Rio ◽  
C. Faur-Brasquet ◽  
L. Le Coq ◽  
D. Lecomte ◽  
P. Le Cloirec

Sewage sludges produced from wastewater treatment plants continue to create environmental problems in terms of volume and method of valorization. Thermal treatment of sewage sludge is considered as an attractive method in reducing sludge volume which at the same time produces reusable by-products. This paper deals with the first step of activated carbon production from sewage sludge, the carbonization step. Experiments are carried out on viscous liquid sludge and limed sludge by varying carbonization temperature and heating rate. The results show that carbonized residue properties are interesting for activated carbon production.


2014 ◽  
Vol 875-877 ◽  
pp. 196-201 ◽  
Author(s):  
Mohd Faisal Taha ◽  
Ahmad S. Rosman ◽  
Maizatul S. Shaharun

The potential of rice husk-based activated carbon as an alternative low-cost adsorbent for the removal of Pb (II) ion from aqueous solution was investigated. Rice husk-based activated carbon was preparedviachemical activation process using NaOH followed by the carbonization process at 500°C. Morphological analysis was conducted using field-emission scanning electron microscope /energy dispersive X-ray (FESEM/EDX) on three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon. These three samples were also analyzed for their C, H, N, O and Si contents using CHN elemental analyzer and FESEM/EDX. The textural properties of rice husk-based activated carbon, i.e. surface area (253 m2/g) and pore volume (0.17 cm2/g), were determined by N2adsorption. The adsorption studies using rice husk-based activated carbon as an adsorbent to remove Pb (II) ion from aqueous solution were carried out at a fixed initial concentration of Pb (II) ion (150 ppm) with varying adsorbent dose as a function of contact time at room temperature. The concentration of Pb (II) ion was determined by atomic absorption spectrophotometer (AAS). The removal of Pb (II) ion from aqueous solution increased from 35 % to 82 % when the amount of rice husk-based activated carbon was increased from 0.05 g to 0.30 g. The equilibrium data obtained from adsorption studies was found to fit both Langmuir and Freundlich adsorption isotherms.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4313 ◽  
Author(s):  
Astrid Roxanna Moreno-Marenco ◽  
Liliana Giraldo ◽  
Juan Carlos Moreno-Piraján

Parabens (alkyl-p-hidroxybenzoates) are antimicrobial preservatives used in personal care products, classified as an endocrine disruptor, so they are considered emerging contaminants. A raw version of activated carbons obtained from African palm shell (Elaeis guineensis) modified chemically by impregnation with salts of CaCl2 (GC2), MgCl2 (GM2) and Cu(NO3)2 (GCu2) at 2% wt/v and carbonized in CO2 atmosphere at 1173 K was prepared. The process of adsorption of methyl (MePB) and ethylparaben (EtPB) from aqueous solution on the activated carbons at 18 °C was studied and related to the interactions between the adsorbate and the adsorbent, which can be quantified through the determination of immersion enthalpies in aqueous solutions of corresponding paraben, showing the lowest-value carbon GM2, which has a surface area of 608 m2 × g−1, while the highest values correspond to the activated carbon GCu2, with a surface area of 896 m2 × g−1 and the highest content of surface acid sites (0.42 mmol × g−1), such as lactonic and phenolic compounds, which indicates that the adsorbate–adsorbent interactions are favored by the presence of these, with interaction enthalpies that vary between 5.72 and 51.95 J × g−1 for MePB adsorption and 1.24 and 52.38 J × g−1 for EtPB adsorption showing that the process is endothermic.


2019 ◽  
Vol 14 (4) ◽  
pp. 897-907 ◽  
Author(s):  
Hosseinali Asgharnia ◽  
Hamidreza Nasehinia ◽  
Roohollah Rostami ◽  
Marziah Rahmani ◽  
Seyed Mahmoud Mehdinia

Abstract Phenol and its derivatives are organic pollutants with dangerous effects, such as poisoning, carcinogenicity, mutagenicity, and teratogenicity in humans and other organisms. In this study, the removal of phenol from aqueous solution by adsorption on silica and activated carbon of rice husk was investigated. In this regard, the effects of initial concentration of phenol, pH, dosage of the adsorbents, and contact time on the adsorption of phenol were investigated. The results showed that the maximum removal of phenol by rice husk silica (RHS) and rice husk activated carbon (RHAC) in the initial concentration of 1 mgL−1 phenol, 2 gL−1 adsorbent mass, 120 min contact time, and pH 5 (RHS) or pH 6 (RHAC) were obtained up to 91% and 97.88%, respectively. A significant correlation was also detected between increasing contact times and phenol removal for both adsorbents (p < 0.01). The adsorption process for both of the adsorbents was also more compatible with the Langmuir isotherm. The results of this study showed that RHS and RHAC can be considered as natural and inexpensive adsorbents for water treatment.


2010 ◽  
Vol 81 (2) ◽  
pp. 593-599 ◽  
Author(s):  
N.S. Awwad ◽  
H.M.H. Gad ◽  
M.I. Ahmad ◽  
H.F. Aly

Sign in / Sign up

Export Citation Format

Share Document