scholarly journals Soil CO2 Emission under Different Tillage Practices in Major Soils of Kerala

Author(s):  
S. Toufeeq ◽  
D. Dhalin ◽  
Seena R. Subhagan ◽  
Dipak S. Khatawkar ◽  
B. Aparna ◽  
...  

International responsibility is increasing in India to adopt a more pro-active role in greenhouse gas emission. Hence, it is important to develop a clear understanding of our emission inventory towards reducing Carbon dioxide (CO2) emissions. Soils are an important pool of active carbon and tillage can lead to carbon emission from agricultural soils. This study assess the quantity of CO2 release from three major soils (red loam, coastal sandy and paddy field soil) of Kerala under different tillage practices(conventional, with cultivator and with rotovator) and to optimize the tillage practices with minimum CO2 emission. The CO2emission from soil surfaces was measured using base trap method with Sodium hydroxide (NaOH) as base. The influence of soil temperature, soil moisture content, organic matter in soil, soil pH, bulk density, atmospheric temperature and relative humidity on CO2 emission was assessed. The conventional tillage resulted in the maximum CO2 emission followed by the tillage with cultivator and the least value was observed when tilled with rotovator. The maximum CO2 emission was observed in the paddy field soil followed by red loam and the least value was observed from the coastal sandy. The major quantity of CO2 was released just after the breakage of soil in all kind of tillage methods and became almost equal to the undisturbed condition after two hours of ploughing. The bulk density of soil was negatively correlated, organic carbon content was positively correlated, soil temperature was positively correlated and atmospheric temperature was positively correlated with CO2 emission from the red loam soil in all the tillage practices. No significant correlation was obtained between relative humidity and soil moisture with CO2emission.Tillage with rotovator contributed the minimum CO2 to atmosphere and significantly affects the concentration of CO2in the atmosphere, ultimately contribute in mitigation of global warming.

2008 ◽  
Vol 16 (6) ◽  
pp. 586 ◽  
Author(s):  
Zhang Jianping ◽  
Dong Naiyuan ◽  
Yu Haobin ◽  
Zhou Yongjun ◽  
Lu Yongliang ◽  
...  

2021 ◽  
Vol 156 ◽  
pp. 108186
Author(s):  
Rasit Asiloglu ◽  
Kobayashi Kenya ◽  
Solomon Oloruntoba Samuel ◽  
Bahar Sevilir ◽  
Jun Murase ◽  
...  

2008 ◽  
Vol 81 (4) ◽  
pp. 383-386 ◽  
Author(s):  
M. Iwashita ◽  
T. Maeda ◽  
T. Hori ◽  
T. Asada ◽  
K. Oikawa ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Takashi Kunito ◽  
Takashi Shiroma ◽  
Hitoshi Moro ◽  
Hirotaka Sumi

Annual variations in enzyme activities involved in carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) cycling and soil physicochemical properties were examined in a Japanese paddy field. All the enzyme activities determined at the field soil temperature (range, 2.2°C–28.3°C) increased exponentially with soil temperature (p<0.001). Significant negative correlations were found between Bray-2P concentration and the ratio of acid phosphatase to β-D-glucosidase activity (Spearman r = −0.631, p = 0.005) and between total N and the ratio of L-asparaginase to β-D-glucosidase activity (r = −0.612, p=0.007), suggesting that in accordance with the resource allocation model, acid phosphatase and L-asparaginase were synthesized by microorganisms depending on the temporal changes in soil P and N availability. These results suggest the significance of soil temperature in controlling in situ enzyme activities in paddy soil and also that the stoichiometry of enzyme activities associated with C, N, and P acquisition reflects the soil nutrient availability.


2014 ◽  
Vol 11 (19) ◽  
pp. 5567-5579 ◽  
Author(s):  
Y. Kim ◽  
K. Nishina ◽  
N. Chae ◽  
S. J. Park ◽  
Y. J. Yoon ◽  
...  

Abstract. The tundra ecosystem is quite vulnerable to drastic climate change in the Arctic, and the quantification of carbon dynamics is of significant importance regarding thawing permafrost, changes to the snow-covered period and snow and shrub community extent, and the decline of sea ice in the Arctic. Here, CO2 efflux measurements using a manual chamber system within a 40 m × 40 m (5 m interval; 81 total points) plot were conducted within dominant tundra vegetation on the Seward Peninsula of Alaska, during the growing seasons of 2011 and 2012, for the assessment of driving parameters of CO2 efflux. We applied a hierarchical Bayesian (HB) model – a function of soil temperature, soil moisture, vegetation type, and thaw depth – to quantify the effects of environmental factors on CO2 efflux and to estimate growing season CO2 emissions. Our results showed that average CO2 efflux in 2011 was 1.4 times higher than in 2012, resulting from the distinct difference in soil moisture between the 2 years. Tussock-dominated CO2 efflux is 1.4 to 2.3 times higher than those measured in lichen and moss communities, revealing tussock as a significant CO2 source in the Arctic, with a wide area distribution on the circumpolar scale. CO2 efflux followed soil temperature nearly exponentially from both the observed data and the posterior medians of the HB model. This reveals that soil temperature regulates the seasonal variation of CO2 efflux and that soil moisture contributes to the interannual variation of CO2 efflux for the two growing seasons in question. Obvious changes in soil moisture during the growing seasons of 2011 and 2012 resulted in an explicit difference between CO2 effluxes – 742 and 539 g CO2 m−2 period−1 for 2011 and 2012, respectively, suggesting the 2012 CO2 emission rate was reduced to 27% (95% credible interval: 17–36%) of the 2011 emission, due to higher soil moisture from severe rain. The estimated growing season CO2 emission rate ranged from 0.86 Mg CO2 in 2012 to 1.20 Mg CO2 in 2011 within a 40 m × 40 m plot, corresponding to 86 and 80% of annual CO2 emission rates within the western Alaska tundra ecosystem, estimated from the temperature dependence of CO2 efflux. Therefore, this HB model can be readily applied to observed CO2 efflux, as it demands only four environmental factors and can also be effective for quantitatively assessing the driving parameters of CO2 efflux.


2000 ◽  
Vol 35 (3) ◽  
pp. 359-364
Author(s):  
Tomoyuki TAKAHASHI ◽  
Misako KOMAMURA ◽  
Shigeo UCHIDA

Sign in / Sign up

Export Citation Format

Share Document