scholarly journals Evaluation of Maize (Zea mays L.) Hybrids for Economic Heterosis under Different Soil Moisture Regimes at North Eastern Plain Zone of India

Author(s):  
Ashok Singamsetti ◽  
J. P. Shahi ◽  
P. H. Zaidi ◽  
K. Seetharam ◽  
Kartik Madankar ◽  
...  

The present experiment was conducted to understand the effect of soil moisture status on the economic or standard heterosis in fifty maize hybrids for grain yield and flowering traits.  The trials were planted at Agricultural Research Farm, Banaras Hindu University, Varanasi in alpha-lattice design with two replications. The analysis of variance revealed the significant differences for grain yield and flowering related traits such as days to 50% anthesis, days to 50% silking and anthesis-silking interval under all the moisture conditions including optimal, managed drought and managed waterlogging conditions. Significant amount of heterosis was observed over the selected check P3502 for all the traits under study; however, the magnitude and direction varied with traits and with soil moisture level. For days to 50% anthesis, hybrids ZH17192, VH112926, VH123021, ZH114250, ZH16929 and ZH16930 were showed significant negative heterosis under all the moisture conditions that explained earliness under both moisture-stress and normal conditions. Among the tested hybrids, VH123021 and ZH16929 were recorded significant negative standard heterosis for flowering traits; and significant positive heterosis for grain yield under all the three moisture conditions. Six hybrids under drought, seven hybrids under optimal and two hybrids under waterlogged condition showed positive standard heterosis for grain yield. Further evaluation of these hybrids at multi-locations and multi-year is advisable to confirm the promising findings observed in our study. This study could be valuable for development of climate-resilient maize hybrids.

1964 ◽  
Vol 15 (5) ◽  
pp. 729 ◽  
Author(s):  
D Aspinall ◽  
PB Nicholls ◽  
LH May

The effects of soil moisture stress on tillering, stem elongation, and grain yield of barley (cv. Prior) have been studied by subjecting the plants to periods of stress at different stages of development. Soil moisture stress treatments consisted of repeated short cycles of stress, single short cycles (both in large pots), or single long cycles (in large lysimeters). The data collected support the contention that the organ which is growing most rapidly at the time of a stress is the one most affected. Grain numbers per ear were seriously affected by stress occurring prior to anthesis, an effect probably associated with the process of spikelet initiation and, later, with the formation of the gametes. Grain size, on the other hand, was reduced more by stress at anthesis and shortly after. Elongation of the internodes was reduced mostly by stress at or just before earing, and was less seriously affected by earlier or later stress. Tillering, although being suppressed during a drought cycle, was actually stimulated upon rewatering. The effect was greater the earlier the period of stress, and was probably related to nutrient uptake and distribution within the plant.


1986 ◽  
Vol 107 (2) ◽  
pp. 249-256 ◽  
Author(s):  
W. E. Finch-Savage

SummaryThe emergence of seedlings from natural, germinating and selected uniformlygerminated onion seeds was compared in a range of changing patterns of soil moisture. The timing, spread and amount of seedling emergence from seeds in all three treatments were affected by the timing of water availability in the seed bed and these effects differed between treatments.The rate of seedling emergence in all three treatments under non-limiting soil moisture conditions was correlated with mean temperature, but this relationship was obscured in irrigation treatments where water stress occurred. However, if the seed bed was moist at sowing irrespective of subsequent moisture stress the reciprocals of the time to the start, time to 50% and time to the end of seedling emergence from uniformly germinated seeds were correlated with mean temperature (r > 0·87, D.F. 27).The results show that if the seed bed is irrigated prior to sowing and soil moisture is maintained during the first 3 days following sowing high levels of seedling emergence with both predictable timing and uniformity can be achieved by sowing uniformlygerminated seeds. Seedling emergence from natural and germinating seeds was much less predictable.


2012 ◽  
Vol 45 (3) ◽  
pp. 25-39 ◽  
Author(s):  
S. Mohammadi ◽  
M. Janmohammadi ◽  
A. Javanmard ◽  
N. Sabaghnia ◽  
M. Rezaie ◽  
...  

Abstract The capability of a genotype to achieve acceptable yield over a broad range of sub-optimum and suitable conditions is extremely imperative. Late planting and end-season drought stress are two main factors limiting wheat yield in northwest of Iran. In a 2-year field experiment at Miandoab, Iran, the ability of several selection indices to identify drought resistant genotypes under different sowing dates and moisture conditions were evaluated. Six genotypes of differing response to water scarcity were planted at 20-d intervals on three dates from 11 October to 20 November. Drought resistance indices were utilized on the basis of grain yield under end-season drought (Ys) and normal (YN) conditions. Evaluation of MP, HARM, GM, STI, TOL, SSI, RDI, YSI and Yr indicated that late sowing (20 Nov) significantly decreased drought tolerance in all investigated genotypes. However, yield comparisons under normal and terminal drought stress conditions revealed that promising lines (C-81-4, C-81- 10, C-81-14 and C-82-12) had better performance than local checks (Zarrin and Alvand). Furthermore under both moisture conditions C-81-10 genotype had the greatest grain yield. Based on drought indices like as MP, GMP, STI and HARM C-81-10 genotype introduced as the most tolerant genotype to end-season drought stress. Grain yield showed a positive and significant correlation with HARM, GMP, MP, STI and YI indices were more efficient for recognizing high performance genotypes under different sowing dates and diverse moisture stress.


2021 ◽  
Author(s):  
Bruce Mutari ◽  
Julia Sibiya ◽  
Edmore Gasura ◽  
Prince Muchapondwa Matova ◽  
Kennedy Simango ◽  
...  

Abstract Knowledge of the genetic basis of navy bean (Phaseolus vulgaris L.) performance under drought stress (DS) is important for planning appropriate breeding and selection strategies in DS environments. Twenty-eight F2 progenies generated from an 8 x 8 half-diallel mating design were evaluated to determine combining ability effects and mode of gene action of grain yield (GYD) and yield attributing traits in navy bean under DS and non-stressed (NS) conditions. The experiments were conducted in two locations in a 6 x 6 square lattice design with two replications during the 2020 dry season. There were significant (p < 0.001; p < 0.05) positive correlations for number of pods per plant (NPPP), number of seeds per plant (NSPP) and 100-seed weight (SW) with GYD under both DS and NS. General and specific combining ability (GCA; SCA) effects were significant (p < 0.05) under both DS and NS for most traits indicating the importance of both additive and non-additive gene effects in the expression of the traits. Parents with best combining ability for most of the studied traits were G1, G7, G6 and G8 under NS, and G3, G4, G7 and G8 under DS. The most promising progenies with high values for GYD and its component traits under DS were G2 X G3, G2 X G8, G4 X G5, G4 X G8, and G6 X G8. Good general and specific combiners with high significant positive effects under DS should be used further in breeding for moisture stress tolerance.


2015 ◽  
Vol 39 (3) ◽  
pp. 385-396
Author(s):  
MA Zaman ◽  
MNA Siddquie ◽  
M Mahbubur Rahman ◽  
MY Abida ◽  
MJ Islam

Thirty genotypes of wheat were grown in an Alpha Lattice Design with three replications for evaluation and divergence analysis. Seeds were sown on 24 November 2011 at Regional Wheat Research Centre, Bangladesh Agricultural Research Institute, Shyampur, Rajshahi. Significant variation was observed among the genotypes and these are grouped into six clusters. Clusters III and VI were comprised of maximum number of genotypes (6) followed by clusters I, IV, and V with 5 genotypes and the minimum genotypes (3) were in cluster II. The maximum inter-cluster distance was recorded between the Cluster VI and Cluster II followed by cluster III and Cluster II, which indicates that genotypes belonging to these distant clusters could be used in hybridization programme for getting a wide spectrum of variation among the segregates. The minimum intercluster distance was found between the Cluster IV and Cluster I followed by that of Cluster V and Cluster IV. The maximum intra-cluster distance was recorded in Cluster II, consisted of three genotypes of diverse origin followed by Cluster V consisting of five genotypes which indicated that the genotypes of these clusters might have considerable diversity among themselves. While the minimum distance was computed in Cluster I composed of five genotypes which indicated that these genotypes were genetically very close to each other. Considering the eigenvalues of all principal component analysis the PC1, PC2, PC3, PC4, and PC5 with values contributed 30.78%, 20.11%, 17.75%, 10.93%, and 7.63%, respectively, of the total variation. The results revealed from the present study that the first principal component had high positive component loading from grains/spike and high negative loading from grain yield. Considering the clusters mean value, the genotype of Cluster II and VI are most divergent and maximum heterosis and wide variability in genetic architecture may be expected from the crosses between the genotypes belonged to these clusters. More specifically the cluster II could be selected for dwarf in nature, early heading and maturity and bold grain size. The genotypes from the cluster IV could be selected for maximum spikes/m2 and maximum grain yield. The positive value of both vectors for days to heading and spikes/m2 indicated that these traits had the highest contribution towards divergence among the 30 drought tolerant wheat genotypes. DOI: http://dx.doi.org/10.3329/bjar.v39i3.21982 Bangladesh J. Agril. Res. 39(3): 385-396, September 2014


Author(s):  
M. M. Hoque ◽  
H. Z. Raihan ◽  
Tanjila Nasreen Trina ◽  
Md. Razzab Ali

Nineteen selected lines of field corn were crossed in a line × tester method with two testers to produce 38 hybrids during rabi 2018-2019. In the following year, all the hybrids were raised along with five commercial checks in an alpha lattice design with two replications. The lines E34, BML75, BML76, BML249, BIL106, CML465, CML481 and CML487 were better among the parents, showing GCA effects for yield and other traits could be used extensively in hybrid breeding program owing to increase yield. Furthermore, based on mean, SCA effects and standard heterosis of yield value, the crosses BML75 x BIL79, E34XBIL157, BML76 x BIL157 and BML249 x BIL157 were found to be better to increase the grain yield along with other traits and play pivotal role to development of commercial hybrid.


Sign in / Sign up

Export Citation Format

Share Document