Assessment of Drought Tolerance Indices in Bread Wheat Genotypes Under Different Sowing Dates

2012 ◽  
Vol 45 (3) ◽  
pp. 25-39 ◽  
Author(s):  
S. Mohammadi ◽  
M. Janmohammadi ◽  
A. Javanmard ◽  
N. Sabaghnia ◽  
M. Rezaie ◽  
...  

Abstract The capability of a genotype to achieve acceptable yield over a broad range of sub-optimum and suitable conditions is extremely imperative. Late planting and end-season drought stress are two main factors limiting wheat yield in northwest of Iran. In a 2-year field experiment at Miandoab, Iran, the ability of several selection indices to identify drought resistant genotypes under different sowing dates and moisture conditions were evaluated. Six genotypes of differing response to water scarcity were planted at 20-d intervals on three dates from 11 October to 20 November. Drought resistance indices were utilized on the basis of grain yield under end-season drought (Ys) and normal (YN) conditions. Evaluation of MP, HARM, GM, STI, TOL, SSI, RDI, YSI and Yr indicated that late sowing (20 Nov) significantly decreased drought tolerance in all investigated genotypes. However, yield comparisons under normal and terminal drought stress conditions revealed that promising lines (C-81-4, C-81- 10, C-81-14 and C-82-12) had better performance than local checks (Zarrin and Alvand). Furthermore under both moisture conditions C-81-10 genotype had the greatest grain yield. Based on drought indices like as MP, GMP, STI and HARM C-81-10 genotype introduced as the most tolerant genotype to end-season drought stress. Grain yield showed a positive and significant correlation with HARM, GMP, MP, STI and YI indices were more efficient for recognizing high performance genotypes under different sowing dates and diverse moisture stress.

2016 ◽  
Vol 5 (5) ◽  
pp. 156-161
Author(s):  
Mehdi Savadkohi Mahforojaki ◽  
Reza Talebi ◽  
Sayyed Saeid Pourdad

In order to evaluate quantitative drought resistance criteria in some safflower genotypes, fiftheen genotypes were evaluated both under moisture stress and non-stress field environments using a randomized complete block design for each environment. The genotypes showed significant differences in grain yield and other traits. Grain yield under irrigated conditions was adversely correlated with water deficit condition, suggesting that high potential yield under optimal conditions does not necessarily result in improved yield under stress conditions. Genotypes G64, G92 and PI253527 showed lower yield reduction than the average of other genotypes. Surprisingly, most of the genotypes showed more than 30% yield reduction under drought stress. The positive correlation between TOL and irrigated yield (Yp) and the negative correlation between TOL and yield under stress (Ys) suggest that selection based on TOL will result in reduced yield under well-watered conditions. We conclude that GMP and STI are able to discriminate tolerant group of genotypes under both environments. Therefore, genotypes G47, G64, G42 and S411 are superior genotypes for both environments. Genotypes S310 , S149 and Almaneriz are more suitable for non-moisture stress than moisture-stress environment.


Author(s):  
Mohsen Janmohammadi ◽  
Hamid Mostafavi ◽  
Naser Sabaghnia

Abstract Lentil (Lens culinaris Medic.) is one of the important pulse crops in semiarid agro-ecological zones with a Mediterranean-type climate. Terminal drought stress and poor plant nutrition are important factors limiting crop under these regions. The effects of enzymatic biofertiliser (MOG) application at sowing time or during reproductive stage on some morphological traits and yield components of eight lentil lines were evaluated under deficit-irrigation conditions at Maragheh (37°23' N; 46°16' E) in northwestern Iran. Results revealed that application of biofertiliser did not significantly affect most of the morphological traits. However, foliar application of MOG during early flowering stage somewhat increased 100-grain weight and grain yield and decreased the number of empty pod per plant. Moreover, the results indicated that there was significant diversity between lentil lines for the investigated traits. The best performance for grain yield was recorded for FLIP 86-35L. The overall lack of considerable response of lentil to the MOG treatments may suggest that the optimal efficiency of biofertiliser cannot be achieved under water scarcity conditions. Improvement in the adaptation of enzymatic fertilisers to semi arid regions with terminal drought stress requires to be increased.


2021 ◽  
pp. 243-257
Author(s):  
Elgailani Abdalla ◽  
Tarig Ahmed ◽  
Omar Bakhit ◽  
Yasir Gamar ◽  
Salih Elshaikh ◽  
...  

Abstract Groundnut (Arachis hypogaea L.), produced in the traditional small-scale rainfed sector of Western Sudan, accounts for 80% of the total annual groundnut acreage, producing 70% of the total production. Low productivity of groundnut is a characteristic feature in North Kordofan State, which is characterized as the most vulnerable state to the impact of climate change. Terminal drought stress resulting from reduction in rainfall amount and distribution at the end of the season is the most deleterious drought period, as it coincides with groundnut pod filling and maturation periods. High and stable yields under subsistence farming conditions in North Kordofan State could be realized only by using adapted high-yielding, drought-tolerant genotypes. Mutation induction by gamma-rays of 200 and 300 Gy was utilized to irradiate 500 dry seeds of the Spanish-type groundnut genotypes, Barberton, Sodari, ICGV 89104, ICGV 86743, ICGV 86744 and ICG 221, aiming at increasing the chances of obtaining genotypes with the desired drought-tolerant traits. Mutants were selected from the M3 plants using visual morphological traits. Groundnut mutants at the M4 and M5 generations, advanced by single seed descent, were evaluated for end-of-season drought tolerance. A terminal drought period of 25 days was imposed after 60 days from planting, using a rainout shelter. Mutants that survived 25 days of terminal drought stress were further evaluated for agronomic performance under rainfed field conditions. The groundnut mutant, Barberton-b-30-3-B, produced 1024 kg/ha, a significantly higher mean pod yield over 12 seasons compared with 926 kg/ha for 'Gubeish', the widely grown released check cultivar, showing overall yield advantage of 11%. Under 5 years of participatory research, Barberton-b-30-3-B was ranked the best with yield increment of 21% over 'Gubeish' under the mother trials. The GGE biplot analysis for 12 and five seasons, respectively, showed that Barberton-b-30-3-B was stable and produced a good yield in both high and low rainfall situations. Hence, Barberton-b-30-3-B was found to be a suitable mutant for sustainable profitable yields in the marginal dry lands of North Kordofan State and was officially released as 'Tafra-1' by the National Variety Release Committee during its second meeting of April 2018.


2016 ◽  
Vol 155 (6) ◽  
pp. 857-875 ◽  
Author(s):  
I. M. RAO ◽  
S. E. BEEBE ◽  
J. POLANIA ◽  
M. GRAJALES ◽  
C. CAJIAO ◽  
...  

SUMMARYCommon bean (Phaseolus vulgaris L.) is the most important food legume for human consumption. Drought stress is the major abiotic stress limitation of bean yields in smallholder farming systems worldwide. The current work aimed to determine the role of enhanced photosynthate mobilization to improve adaptation to intermittent and terminal drought stress and to identify a few key adaptive traits that can be used for developing drought-resistant genotypes. Field studies were conducted over three seasons at Centro Internacional de Agricultura Tropical, Palmira, Colombia to determine genotypic differences in adaptation to intermittent (two seasons) and terminal (one season) drought stress compared with irrigated conditions. A set of 36 genotypes, including 33 common bean, two wild bean and one cowpea were evaluated using a 6 × 6 lattice design under irrigated and rainfed field conditions. Three common bean elite lines (NCB 226, SEN 56, SER 125) were identified with superior levels of adaptation to both intermittent and terminal drought stress conditions. The greater performance of these lines under drought stress was associated with their ability to remobilize photosynthate to increase grain yield based on higher values of harvest index, pod harvest index, leaf area index and canopy biomass. Two wild bean germplasm accessions (G 19902, G 24390) showed very poor adaptation to both types of drought stress. One small-seeded black line (NCB 226) was superior in combining greater values of canopy biomass with greater ability to mobilize photosynthates to grain under both types of drought stress. Two small-seeded red lines (SER 78, SER 125) seem to combine the desirable traits of enhanced mobilization of photosynthates to seed with effective use of water through canopy cooling under terminal drought stress. Pod harvest index showed significant positive association with grain yield under both types of drought stress and this trait can be used by breeders as an additional selection method to grain yield in evaluation of breeding populations for both types of drought stress.


1976 ◽  
Vol 16 (78) ◽  
pp. 129
Author(s):  
PN Vance

The relationship between grain yield and five plant characters in grain sorghum hybrid Pioneer 846 was studied. Grain yield was closely correlated with head weight, weight of a standard length of peduncle (WSP), peduncle perimeter (PP), head length and breadth. The close correlation of grain yield on WSP was shown to exist at a number of sites and for a number of varieties. However, regression equations differed for different sites, sowing dates and varieties. Of the two components of grain yield per head, single grain weight and grain number; only grain number was closely correlated with WSP. In one instance where moisture stress affected grain development, grain number but not yield was closely correlated with WSP. WSP was shown not to be affected by damage to the head and could therefore be used to estimate potential yield in agronomic trials where yield loss due to pest activity has occurred.


Author(s):  
M. Jincya ◽  
V. Babu Rajendra Prasad ◽  
P. Jeyakumara ◽  
A. Senthila ◽  
N. Manivannan

Drought stress is one of the major constraints for pulse production which negatively affecting its growth and production. Screening and selection of desirable genotypes for drought tolerance is the first and foremost important step in pulse breeding program. In green gram standardization for moisture stress was done under laboratory conditions using various concentration of PEG 6000 and 50% seedling mortality was observed at 0.5 MPa of moisture stress. Using this level of moisture stress 108 green gram genotypes were screened for their drought tolerance at seedling level and the following parameters viz., germination percentage, promptness index, radicle length, root length stress index, germination stress index and seed vigour were recorded. Observations revealed that the following green gram genotypes COGG 1332, VGG 16069, VGG 17003, VGG 17004, VGG 17009, VGG 17019 and VGG 17045 were found highly tolerant to moisture stress at seedling stage.


Author(s):  
K.D. Nkoana ◽  
Abe Shegro Gerrano ◽  
E.T. Gwata

The genetic potential for drought tolerance in cowpea within the small holder sector has not been fully exploited in South Africa. Thus, a drought evaluation experiment was conducted at the ARC-VOP to evaluate 28 cowpea germplasm accessions including two controls viz. IT96D-602 (drought tolerant) and TVU7778 (susceptible to drought) in the drought screening house using plastic box evaluation method in January, 2017. Genotypes raised for three weeks were subjected to 5 weeks of water stress treatment to determine their physiological response through leaf wilting index, relative water content and proline content followed by re-watering to determine genotype (s) with ability to recover from drought stress. Analyses of variance showed highly significant differences in response to moisture stress among the cowpea accessions for the selected physiological traits except for leaf wilting index at week two of drought stress. Stem greenness and recovery appeared to be a reliable indicator of drought tolerant genotypes which was readily observed in Acc1257, Acc1168, Acc2355, IT96D-602 and Acc5352 which also correlated significantly and positively with relative water content and proline content. The genotypes responded differently to drought stress indicating that there is sufficient genetic variability that can be utilized further in breeding for drought stress within the cowpea species.


Author(s):  
Hossam Mohamed Ibrahim Hossam Mohamed Ibrahim

Two field experiments were carried out in the experimental farm of Faculty of Desert and Environmental Agriculture, Fuka, Matrouh Branch, Alexandria University, Egypt, during two successive seasons 2012/2013 and 2013/2014 to study the effect of seed priming with Ascorbic and Salicylic Acids and spraying with silicon on drought tolerance of two barley cultivars, Giza 126 and Giza 2000. Six treatment were used as follows: Seed priming with Ascorbic acid (AA) and irrigation till heading (T1), seed priming with Salicylic acid (SA) and irrigation till heading (T2), seed priming with distilled water and irrigation till heading (T3), spraying with silicon and irrigation till heading (T4), dry seeds cultivation and irrigation till heading (T5) and dry seeds cultivation and all season irrigation (T6). The results indicated that post anthesis stress decreased grain yield by 17.1 % and 100-grain weight by 11.96 %, as an average of the two seasons. Hydropriming and osmopriming with salicylic acid, in addition to spraying with silicon, decreased the effect of drought and barley plants gave comparable grain yield to that of non-stress conditions. Barley cultivar Giza 126 was more tolerant to late drought compared to Giza 2000 cultivar with S values of 0.58 and 1.42, as an average of the two seasons, respectively.


2018 ◽  
Vol 22 (03) ◽  
pp. 72-76
Author(s):  
Enkhbold B ◽  
Ninjmaa O ◽  
Nyamgerel Kh

The laboratory’s experiment conducted at IPAS in 2017. The goal of this study was to evaluate drought stress tolerance of released potato varieties using PEG-6000 in-vitro condition. Middle maturing variety Gala, early maturing Solist and Quarta were used experiment. The objectives were to determine how osmosis pressure affected potato plantlet height, root length, total weight of biomass, and stem diameter using their index comparing to normal condition. The screening experiment used three different treatments. The water stress treatments 0 MPa (control), -0.05 MPa and -0,15 MPa were created by PEG-6000. 6 weeks’ year’s old plantlets were measured by 5 features. The variety Gala showed significant high index by 5 performances among the stressed condition compared to Quarta and Solist. The variety Quarta also showed high performance compared Solist. As a result of this study found out that cultivar Gala more tolerant to drought than Quarta and Solist.


Sign in / Sign up

Export Citation Format

Share Document