Chemical Analysis of Moringa oleifera and M. peregerina and their Growth Responses to Water Stress under Semi-desert Condition of Sudan

2015 ◽  
Vol 3 (1) ◽  
pp. 7-14 ◽  
Author(s):  
Hawa Ali ◽  
Samia Yagoub ◽  
Nada Hamza
Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1090
Author(s):  
Yiftach Vaknin ◽  
Dan Eisikowitch ◽  
Adina Mishal

Our study attempted to elucidate the significance of floral and pollen traits of the highly nutritious tropical trees Moringa oleifera and Moringa peregrina for their reproductive success under arid conditions. We found that the pollen grains of both species were immersed in a pollenkitt that constituted ~ 60% of the pollen. Successful pollination was achieved by large bees inserting the pollen into a narrow stylar tube. We found that, upon removal of the pollenkitt, approximately 65% fewer pollen grains penetrated the stylar tube for both species. The pollenkitt protected against heat and desiccation, while removing the pollenkitt resulted in significantly reduced levels of the viability of pollen grains, especially in M. oleifera, and significantly reduced levels of germinability in both species. The stylar tube provided high protection for pollen grains against heat and desiccation even when the pollenkitt was removed. Chemical analysis of pollenkitts of the two species revealed a waxy blend of 21 hydrocarbon compounds, in which n-alkanes constituted > 90% of the compounds and their identity corresponded to known plant and animal hydrocarbons, associated with protection against heat and water stress. We concluded that, under arid conditions, the reproductive success of both Moringa species is potentially enhanced by their unique floral and pollen traits. This supports the prospect of cultivating M. oleifera and Moringa peregrina as food crops in arid regions across the globe.


Author(s):  
Cecilia Brunetti ◽  
Francesco Loreto ◽  
Francesco Ferrini ◽  
Antonella Gori ◽  
Lucia Guidi ◽  
...  

2019 ◽  
Vol 37 (1) ◽  
pp. 82-88
Author(s):  
Alexandre Igor A Pereira ◽  
João de Jesus Guimarães ◽  
João Victor Costa ◽  
Fernando S de Cantuário ◽  
Leandro C Salomão ◽  
...  

ABSTRACT Water stress compromises plant growth. Resistance inducers, such as potassium silicate (K2SiO3), can reduce negative effects of this stress on Solanaceae, Capsicum annuum. Plant height, stem diameter and leaf area may indicate the efficiency of potassium silicate foliarsprayagainst water stress. The aim of this study was to evaluate the growth of sweet pepper plants under water stress and K2SiO3 doses. The experiment was conducted in randomized blocks in a split-plot scheme in space. The treatments consisted of four soil water stresses: 15 kPa (field capacity), 25 (intermediate value), 35 and 45 kPa (water stress) and three doses of potassium silicate (0, 0.4 and 0.8 L 100 L-1 water), acting as resistance inducers to water stress. The resistance inducer maintained greater heights of the sweet pepper plants, under water stress (35 and 45 kPa) at the initial stage [(20 days after transplanting (DAT)]. Smaller plant diameters were observed at 80 and 100 DAT at 35 and 45 kPa. Sprays using K2SiO3 maintained sweet pepper leaf area with higher values, even under stress condition. The soil water tension from 35 kPa limited, in general, the plant growth. Growth responses in Capsicum annuum to K2SiO3, via foliar spraying, varied according to plant age, as well as the growth parameter considered in this experiment.


2015 ◽  
Vol 21 (2) ◽  
pp. 235 ◽  
Author(s):  
Rhuanito Soranz Ferrarezi ◽  
Marc W. Van Iersel ◽  
Roberto Testezlaf

The objectives of this work were to evaluate the effects of distinct moisture contents to trigger subirrigation on salvia photosynthesis and plant growth, and to verify the feasibility of subirrigation use in water stress imposition research in this crop. We evaluated two substrate volumetric water contents (VWC) as treatments (0.2 and 0.4 m3 m-3) to trigger subirrigation, with 4 replications. Each replication was composed of 10 plants. An automated semi-continuous multi-chamber crop CO2-exchange system was used, with capacitance soil moisture sensors for continuous moisture monitoring. Manual subirrigation with nutrient solution was performed when VWC dropped below the thresholds. In both treatments, the values of net photosynthesis, daily carbon gain and carbon use efficiency reduced over time, from 2 to 1.1 μmol s-1 from 2.2 to 1 μmol d-1 from 0.7 to 0.45 mol mol-1, respectively, in both soil moisture treatments. Total shoot dry mass (p=0.0129), shoot height in the tip of the highest flower (p<0.0001) and total leaf area (p=0.0007) were statistically higher at 0.4 m3 m-3 treatment. The subirrigation system was not efficient to impose water stress, due to excessive variation on VWC values after each irrigation event in both treatments. Higher soil moisture promoted positive plant growth responses in salvia cultivated by subirrigation.


Sign in / Sign up

Export Citation Format

Share Document