scholarly journals Growth of sweet pepper plants submitted to water tensions in soil and potassium silicate doses

2019 ◽  
Vol 37 (1) ◽  
pp. 82-88
Author(s):  
Alexandre Igor A Pereira ◽  
João de Jesus Guimarães ◽  
João Victor Costa ◽  
Fernando S de Cantuário ◽  
Leandro C Salomão ◽  
...  

ABSTRACT Water stress compromises plant growth. Resistance inducers, such as potassium silicate (K2SiO3), can reduce negative effects of this stress on Solanaceae, Capsicum annuum. Plant height, stem diameter and leaf area may indicate the efficiency of potassium silicate foliarsprayagainst water stress. The aim of this study was to evaluate the growth of sweet pepper plants under water stress and K2SiO3 doses. The experiment was conducted in randomized blocks in a split-plot scheme in space. The treatments consisted of four soil water stresses: 15 kPa (field capacity), 25 (intermediate value), 35 and 45 kPa (water stress) and three doses of potassium silicate (0, 0.4 and 0.8 L 100 L-1 water), acting as resistance inducers to water stress. The resistance inducer maintained greater heights of the sweet pepper plants, under water stress (35 and 45 kPa) at the initial stage [(20 days after transplanting (DAT)]. Smaller plant diameters were observed at 80 and 100 DAT at 35 and 45 kPa. Sprays using K2SiO3 maintained sweet pepper leaf area with higher values, even under stress condition. The soil water tension from 35 kPa limited, in general, the plant growth. Growth responses in Capsicum annuum to K2SiO3, via foliar spraying, varied according to plant age, as well as the growth parameter considered in this experiment.

Irriga ◽  
2006 ◽  
Vol 11 (4) ◽  
pp. 441-447 ◽  
Author(s):  
Antonio Evaldo Klar ◽  
Sidnei Osmar Jadoski ◽  
Giusepina Pace Pereira Lima

PEROXIDASE ACTIVITY AS AN INDICATOR OF WATER STRESS IN SWEET PEPPER PLANTS                                             Antonio Evaldo Klar1; Sidnei Osmar Jadoski2; Giusepina Pace Pereira Lima31Departamento de Engenharia Rural, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu, SP, [email protected] Estadual do Centro Oeste,  Centro de Ciências Agrárias e Ambientais, Guarapuava, Pr3Departamento de Bioquímica, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu, SP  1 ABSTRACT             The purpose of the study was to evaluate the physiological and biochemical behavior of sweet pepper (Capsicum annuum L.) plants under different soil water availability conditions and the efficiency of the peroxidase (EC. 1.11.1.7) activity as an indicator of water stress in plants. The experiment was carried out at the Faculdade de Ciências Agronômicas – UNESP, Botucatu, SP. Sweet pepper plants were grown for 230 days after transplanting of seedlings and arranged in a completely randomized experimental design with 4 treatments, two irrigation managements (50 and 1500 kPa) and two soil surface managements (presence or absence of black polyethylene covering), and six replications. Physiological activities, such as stomatal transpiration and resistance to water vapor diffusion, were evaluated as well as biochemical activities, such as peroxidase activity and total soluble protein in foliar tissues. It was observed that soil water availability may lead to physiological and biochemical alterations in plants. Successive water stress cycles may promote the development of characteristics responsible for improving  plant tolerance to periods of low water availability. The peroxidase enzyme activity showed to be an efficient indicator of water stress in sweet pepper plants. KEYWORDS: enzymatic activity; soil moisture; vegetable physiology; soluble protein; Capsicum annuum L.  KLAR, A. E.; JADOSKI, S. O.; LIMA, G. P. P.  A PEROXIDASE COMO INDICADOR DE DÉFICITS HÍDRICOS EM PLANTAS DE PIMENTÃO.  2 RESUMO O objetivo do presente estudo foi avaliar o comportamento fisiológico e bioquímico do pimentão (Capsicum annuum L) sob diferentes condições de disponibilidade de água no solo, além da eficiência da peroxidase (EC 1.11.1.7) como indicador de déficits hídricos nas plantas. O experimento foi desenvolvido na Faculdade de Ciências Agronômicas – UNESP, Botucatu, SP, durante 230 dias após o transplante das plântulas em condições de ambiente protegido com quatro tratamentos: dois níveis de irrigação (-50 e – 1500 kPa como potenciais mínimos de água do solo) e dois manejos de cobertura do solo (com e sem cobertura de lonas de polietileno preto) com seis repetições.  As atividades fisiológicas, como a resistência difusiva dos estômatos e a transpiração foram avaliadas, assim como a peroxidase e a proteina solúvel, nos tecidos foliares. Os resultados mostraram que os déficits hídricos alteraram os fatores fisiológicos estudados e promoveram respostas positivas para a tolerância à déficits hídricos.  A peroxidase mostrou ser um eficiente indicador de estresse hídrico em plantas de pimentão. UNITERMOS: irrigação, cobertura morta, potencial de água no solo, proteina solúvel.


HortScience ◽  
1990 ◽  
Vol 25 (8) ◽  
pp. 857b-857
Author(s):  
Dennis R. Decoteau ◽  
Heather H. Friend

The influence of end-of-day (EOD) supplemental light-priming on pepper (Capsicum annuum cv. Keystone Resistant Giant No. 3) transplants was investigated for possible residual growth effects on subsequent plant growth and fruit production. Greenhouse grown pepper transplants were fluorescent light-primed for one hour prior to dusk for three weeks in 1988 and four weeks in 1989 and then transplanted to the field. EOD fluorescent light-priming of pepper plants reduced the height, leaf area, dry weight, fruit number, and fruit weight as compared to non-treated plants prior to first harvest. EOD fluorescent light-priming of pepper transplants had little effect on early and total fruit production. These results suggest that EOD fluorescent light-priming of transplants that affect early pepper growth in the field have little residual influence on subsequent fruit production.


2000 ◽  
pp. 223-229 ◽  
Author(s):  
S. Delfine ◽  
A. Alvino ◽  
F. Loreto ◽  
M. Centritto ◽  
G. Santarelli

2021 ◽  
Vol 51 ◽  
pp. e1299
Author(s):  
Azareel Angulo-Castro ◽  
Ronald Ferrera-Cerrato ◽  
Alejandro Alarcón ◽  
Juan José Almaraz-Suárez ◽  
Julián Delgadillo-Martínez ◽  
...  

Background: Plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) are an alternative for sustainable management of pepper crops. Objective: To investigate the beneficial effects of PGPR and AMF inoculation on the growth of bell pepper plants. Methods: Two PGPR strains were used (Pseudomonas tolaasii P61 and Bacillus pumilus R44) as well as their mixture, and an uninoculated control. In addition, bacterial treatments were combined with an AMF-consortium (Funneliformis aff. geosporum and Claroideoglomus sp.). A 4×2 factorial experiment [four levels for the bacterial inoculation and two levels of AMF-inoculation (non-AMF and AMF)] was performed with eight treatments, at greenhouse conditions for 80 days after inoculation. AMF inoculation was done at sowing and PGPR after 15 days of seedling emergence. Results and Conclusions: Uninoculated control showed lower growth responses than plants inoculated with PGPR and AMF, alone or in combination. Overall, inoculation of the strain P61 or the combination of R44+AMF increased plant growth. AMF improved the photochemical efficiency of PSII in comparison to either control plants or plants inoculated with R44 or with the bacterial mix. Both PGPR and AMF improved growth and vigor of bell pepper plants.


2015 ◽  
Vol 21 (2) ◽  
pp. 235 ◽  
Author(s):  
Rhuanito Soranz Ferrarezi ◽  
Marc W. Van Iersel ◽  
Roberto Testezlaf

The objectives of this work were to evaluate the effects of distinct moisture contents to trigger subirrigation on salvia photosynthesis and plant growth, and to verify the feasibility of subirrigation use in water stress imposition research in this crop. We evaluated two substrate volumetric water contents (VWC) as treatments (0.2 and 0.4 m3 m-3) to trigger subirrigation, with 4 replications. Each replication was composed of 10 plants. An automated semi-continuous multi-chamber crop CO2-exchange system was used, with capacitance soil moisture sensors for continuous moisture monitoring. Manual subirrigation with nutrient solution was performed when VWC dropped below the thresholds. In both treatments, the values of net photosynthesis, daily carbon gain and carbon use efficiency reduced over time, from 2 to 1.1 μmol s-1 from 2.2 to 1 μmol d-1 from 0.7 to 0.45 mol mol-1, respectively, in both soil moisture treatments. Total shoot dry mass (p=0.0129), shoot height in the tip of the highest flower (p<0.0001) and total leaf area (p=0.0007) were statistically higher at 0.4 m3 m-3 treatment. The subirrigation system was not efficient to impose water stress, due to excessive variation on VWC values after each irrigation event in both treatments. Higher soil moisture promoted positive plant growth responses in salvia cultivated by subirrigation.


2019 ◽  
Vol 11 (5) ◽  
pp. 172
Author(s):  
Ausbie Luis Graça Araújo ◽  
Amanda Maria de Almeida ◽  
João de Jesus Guimarães ◽  
Fernando Soares de Cantuário ◽  
Leandro Caixeta Salomão ◽  
...  

Water stress in sweet corn plants due effect of climatic events, such as El Niño, is difficult to monitor, leading to considerable losses. Silicon (Si) as an exogenous resistance elicitor may reduce water stress effects. The relationship between sweet corn plant age and its development, under induced water stress and leaf potassium silicate applications were evaluated. This work was carried out with the hybrid Tropical Plus®, in a randomized factorial block design with 15, 30, 45 and 60 kPa as soil water tensions in plots and potassium silicate doses (0, 6, 12 and 24 L ha-1) in subplots. Stem diameter, plant height and leaf number per plant were evaluated at 30, 45, 60, 75 and 90 days after seeding. Root length was measured on the 90th day after seeding. Sweet corn plants submitted to water stress conditions and Si application showed an age-dependent response. Water stress did not decrease stem diameter, plant height and number of leaves per plant sprayed with Si. Root length was longer with 60 kPa soil water tension. Silicon reduced negative impacts of water stress on sweet corn plants.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1180 ◽  
Author(s):  
Muneera D. F. ALKahtani ◽  
Kotb A. Attia ◽  
Yaser M. Hafez ◽  
Naeem Khan ◽  
Ahmed M. Eid ◽  
...  

Salinity stress deleteriously affects the growth and yield of many plants. Plant growth promoting rhizobacteria (PGPR) and chitosan both play an important role in combating salinity stress and improving plant growth under adverse environmental conditions. The present study aimed to evaluate the impacts of PGPR and chitosan on the growth of sweet pepper plant grown under different salinity regimes. For this purpose, two pot experiments were conducted in 2019 and 2020 to evaluate the role of PGPR (Bacillus thuringiensis MH161336 106–8 CFU/cm3) applied as seed treatment and foliar application of chitosan (30 mg dm−3) on sweet pepper plants (cv. Yolo Wonder) under two salinity concentrations (34 and 68 mM). Our findings revealed that, the chlorophyll fluorescence parameter (Fv/Fm ratio), chlorophyll a and b concentrations, relative water content (RWC), and fruit yield characters were negatively affected and significantly reduced under salinity conditions. The higher concentration was more harmful. Nevertheless, electrolyte leakage, lipid peroxidation, hydrogen peroxide (H2O2), and superoxide (O2−) significantly increased in stressed plants. However, the application of B. thuringiensis and chitosan led to improved plant growth and resulted in a significant increase in RWC, chlorophyll content, chlorophyll fluorescence parameter (Fv/Fm ratio), and fruit yield. Conversely, lipid peroxidation, electrolyte leakage, O2−, and H2O2 were significantly reduced in stressed plants. Also, B. thuringiensis and chitosan application regulated the proline accumulation and enzyme activity, as well as increased the number of fruit plant−1, fruit fresh weight plant−1, and total fruit yield of sweet pepper grown under saline conditions.


Sign in / Sign up

Export Citation Format

Share Document