scholarly journals Evaluation of Different WQI Methods for Drinking Water Assessment with a Case Study of Groundwater from Vizianagaram District, AP, India

Author(s):  
A. G. S. Reddy ◽  
K. S. Sastry ◽  
Guru Raghavendra

Application of Water Quality Index (WQI) to assess the water quality for drinking water suitability and intensity of contamination is in practice worldwide. Many WQI methods have been in use since their conceptualization, and some are country-specific or use-specific. A generalized and widely acceptable method that can project ground truths in non-dimensional numerical form to evaluate the water quality, especially for drinking uses, is lacking. Complexity and disagreement among different methods are adding to incongruence among the scientists. The concept and a simple calculation method of WQI are deliberated. Five different WQI methods using water chemistry results of Vizianagarm District are discussed. The WQI output obtained from these methods displays discrepancies in the proper projection of water quality. Some samples show similarities in WQI values obtained from two to four methods. However, the suitability status of water for drinking purposes could not be precisely ascertained from these indices. Since the water chemistry results and WQI values are incompatible, the output from these methods could be red herring. Few issues are identified among the studied methods which need improvisation. The use of ideal value in the weighted arithmetic index method and arbitration in assigning Weight for each parameter gives scope for speculation. Non-uniformity in the categorization of water and the suitability statuses of drinking water are discouraging factors. The WQI is an effective tool in screening the vast database for identifying and addressing the issues in water quality. Since drinking water standards and water supply are government-sponsored, an institutional intervention is required to standardize the WQI computation procedure. Such an initiative is necessary for the practical application of water quality data to contain water-borne diseases.

2017 ◽  
Vol 35 (1) ◽  
pp. 221-228 ◽  
Author(s):  
Soraya Bouslah ◽  
Lakhdar Djemili ◽  
Larbi Houichi

Abstract Water quality index (WQI) is a mathematical tool used to transform large quantities of water quality data into a single number which present water quality level. The aim of the present study is to evaluate the quality of Koudiat Medouar Dam in Batna (Algeria) to assess its suitability for drinking purposes. Samples were assessed for ten (10) physicochemical settings namely pH, electrical conductivity, total hardness, nitrate, sulphate, chloride, calcium, magnesium, dissolved oxygen and turbidity. The calculation of WQI was done via weighted arithmetic index method. The WQI values ranged from 99.097 to 174.92 during 2015. It reflected that the water samples were in February in the range of very poor quality and ranged to be in unsuitable for drinking rang in the all other months. The WQI of the present study reveals dam water is contaminated and not suitable for drinking purpose without giving treatment.


Author(s):  
Giri Rohmad Barokah ◽  
Farida Ariyani ◽  
Tuti Hartati Siregar

The determination of pollution status is an important process of environmental quality monitoring especially in strategic waters for coastal areas, such as in Lampung Bay. An effective and sensitive Water Quality Index (WQI) method is needed, to accurately determine the environmental pollution status. This study aimed to compare the sensitivity of Storage and Retrieval of Water Quality data System (STORET) and Pollution Index (PI) as a WQI method, a case study from Lampung Bay coastal waters, Indonesia.  Water quality analysis i.e. Dissolve Oxygen (DO), pH, salinity, nitrite, nitrate, phosphate and ammonia was conducted spatially (three zones of Lampung Bay; river mouth, aquaculture and bay area) and seasonally (April and October 2015). The study found that nitrate and phosphate values were exceeded the limits of water quality standard (Indonesia Ministry of Environment Decree No. 51/2004) for marine organisms. However it may still support the aquaculture activities. The two WQI methods produced different pollution status of Lampung bay. STORET was found to be more sensitive method. Pollution Index method revealed a status of moderately polluted while STORET showed heavily polluted status. Therefore, this study suggest the use of STORET index, compare to Pollution Index, in an assessment of pollution status at watershed area.


2005 ◽  
Vol 5 (2) ◽  
pp. 123-134 ◽  
Author(s):  
R. Miller ◽  
B. Whitehill ◽  
D. Deere

This paper comments on the strengths and weaknesses of different methodologies for risk assessment, appropriate for utilisation by Australian Water Utilities in risk assessment for drinking water source protection areas. It is intended that a suggested methodology be recommended as a national approach to catchment risk assessment. Catchment risk management is a process for setting priorities for protecting drinking water quality in source water areas. It is structured through a series of steps for identifying water quality hazards, assessing the threat posed, and prioritizing actions to address the threat. Water management organisations around Australia are at various stages of developing programs for catchment risk management. While much conceptual work has been done on the individual components of catchment risk management, work on these components has not previously been combined to form a management tool for source water protection. A key driver for this project has been the requirements of the National Health and Medical Research Council Framework for the Management of Drinking Water Quality (DWQMF) included in the draft 2002 Australian Drinking Water Guidelines (ADWG). The Framework outlines a quality management system of steps for the Australian water industry to follow with checks and balances to ensure water quality is protected from catchment to tap. Key steps in the Framework that relate to this project are as follows: Element 2 Assessment of the Drinking Water Supply System• Water Supply System analysis• Review of Water Quality Data• Hazard Identification and Risk Assessment Element 3 Preventive Measures for Drinking Water Quality Management• Preventive Measures and Multiple Barriers• Critical Control Points This paper provides an evaluation of the following risk assessment techniques: Hazard Analysis and Critical Control Points (HACCP); World Health Organisation Water Safety Plans; Australian Standard AS 4360; and The Australian Drinking Water Guidelines – Drinking Water Quality Management Framework. These methods were selected for assessment in this report as they provided coverage of the different approaches being used across Australia by water utilities of varying: scale of water management organisation; types of water supply system management; and land use and activity-based risks in the catchment area of the source. Initially, different risk assessment methodologies were identified and reviewed. Then examples of applications of those methods were assessed, based on several key water utilities across Australia and overseas. Strengths and weaknesses of each approach were identified. In general there seems some general grouping of types of approaches into those that: cover the full catchment-to-tap drinking water system; cover just the catchment area of the source and do not recognise downstream barriers or processes; use water quality data or land use risks as a key driving component; and are based primarily on the hazard whilst others are based on a hazardous event. It is considered that an initial process of screening water quality data is very valuable in determining key water quality issues and guiding the risk assessment, and to the overall understanding of the catchment and water source area, allowing consistency with the intentions behind the ADWG DWQM Framework. As such, it is suggested that the recommended national risk assessment approach has two key introductory steps: initial screening of key issues via water quality data, and land use or activity scenario and event-based HACCP-style risk assessment. In addition, the importance of recognising the roles that uncertainty and bias plays in risk assessments was highlighted. As such it was deemed necessary to develop and integrate uncertainty guidelines for information used in the risk assessment process. A hybrid risk assessment methodology was developed, based on the HACCP approach, but with some key additions and modifications to make it applicable to varying catchment risks, water supply operation needs and environmental management processes.


2020 ◽  
Vol 31 (2) ◽  
pp. 99-105
Author(s):  
Hemant Pathak

AbstractThe present study uses numerous chemometric techniques to evaluate and interpret a water quality data obtained from the drinking water resources namely municipal water (supplied by Rajghat dam on Bewas River), bore well, ground water of Sagar city, a divisional headquarter of Madhya Pradesh, India. Data was collected from May 2018 to June 2019 for 10 parameters used to assess the status of the water quality. Water quality was monitored at 15 sampling stations along the entire district. The data were analyzed using chemometric analysis such as principal component analysis, correlation matrix, multivariate linear regression analysis and hierarchical cluster analysis that reduced the data dimensions for better interpretation. Results of statistical analysis expressed that slightly higher value of BOD in some areas due to sewage contamination, need of chlorination treatment required at those places. This study also presents the value of diverse statistical methods for assessment and analysis of drinking water quality data for the reason of monitoring the effectiveness of water resource management. The study indicated that the maximum quality parameters of drinking water is in permissible limits of WHO and IS: 10500 guidelines on entire study places.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Banan Hejaz ◽  
Issam A. Al-Khatib ◽  
Nidal Mahmoud

Like several parts in the Middle East, the West Bank is in a significant water scarcity status. Palestinians use groundwater as the main water source, supplying more than 90% of the consumed water in the West Bank. The aim of this study is to enhance the knowledge on drinking water quality in the West Bank. Groundwater quality data was obtained from the Palestinian Water Authority, including the years 2015 and 2016, from the Northern six districts of the West Bank. The water quality data were analyzed and matched with the World Health Organization (WHO) guidelines and the Palestinian standards for drinking water quality. The findings of this study revealed that groundwater in the north of the West Bank comply with several drinking water requirements including total hardness, pH, and sodium and chloride content. Conversely, 18% of the samples exceed the limits for nitrate concentration. The fecal Coliforms and total Coliforms results show that 98.7% of the samples give no risk, but 1.3% of the samples give low risk, and no sample gives intermediate-to-high risks. The microbial and chemical pollution of groundwater is postulated to inadequate wastewater management, high use of fertilizers, and uncontrolled disposal of animal manure. Therefore, it is crucial to disinfect drinking water at the source of production before supply as an immediate action, followed by implementing pollution prevention measures.


2013 ◽  
Vol 13 (3) ◽  
pp. 835-845
Author(s):  
Fei Chen ◽  
William B. Anderson ◽  
Peter M. Huck

An integrated approach for the identification and assessment of the most critical chemical contaminant(s) at a drinking water intake has been developed. It involves the determination of a threshold or critical raw water concentration (CRWC) for target contaminants using the observed overall removal efficiency of a specific water treatment plant (WTP) and regulated drinking water concentrations for the target contaminants. The exceedance probability relative to the CRWC based on historical raw water quality monitoring data is then calculated. Finally, the integration of the raw water quality data and the overall efficiency of a particular WTP sequence allows for identification of the most critical contaminant(s) as well as an advance indication of which contaminants are most likely to challenge a plant. The proactive nature of this approach gives a utility the impetus and time to assess current treatment processes and potential alternatives. In addition, it was found that three- or four-parameter theoretical distributions are more appropriate than two-parameter probability distributions for the fitting of raw water quality data. This study reveals that the reliance on raw and/or treated water contaminant concentrations in isolation or on theoretical removals through treatment processes can, in some circumstances, be misguided.


2010 ◽  
Vol 18 (NA) ◽  
pp. 291-307 ◽  
Author(s):  
Claire F. McGuigan ◽  
Camille L.A. Hamula ◽  
Sarah Huang ◽  
Stephan Gabos ◽  
X. Chris Le

Recent events have increased public awareness of drinking water quality in Canada. The goal of this review was to examine how much information about arsenic (As) in Canadian drinking water is available. Provincial, territorial, and federal Web sites were searched for information about As in drinking water. Major scientific databases (PubMed, Web of Science) were searched for drinking water As information for all provinces and territories. Resulting information was examined for availability, accessibility, quality, and timeliness. Most provinces provided at least basic fact sheets about As, and several provinces provided comprehensive databases containing actual test results. The vast majority of Canadian municipal drinking water systems with As data show a concentration below 10 μg/L, the current guideline level. Several locations in Alberta, British Columbia, Manitoba, New Brunswick, Newfoundland and Labrador, Nova Scotia, Québec, and Saskatchewan have localized elevations of As (“hotspots”, >10 μg/L As); this information is available at the provincial level, but may not include exact locations nor the degree by which they exceed the current guideline limit of 10 μg/L. For other locations, however, little information is available. The lack of a centralized information source represents a significant obstacle to obtaining drinking water quality data. Although difficult to implement, a centralized and standardized source of national drinking water quality data is urgently needed to determine the effects of As and other contaminants on Canadians.


2015 ◽  
Vol 13 (3) ◽  
pp. 920-930 ◽  
Author(s):  
Tamie J. Jovanelly ◽  
Julie Johnson-Pynn ◽  
James Okot-Okumu ◽  
Richard Nyenje ◽  
Emily Namaganda

Four forest reserves within 50 km of Kampala in Uganda act as a critical buffer to the Lake Victoria watershed and habitat for local populations. Over a 9-month period we capture a pioneering water quality data set that illustrates ecosystem health through the implementation of a water quality index (WQI). The WQI was calculated using field and laboratory data that reflect measured physical and chemical parameters (pH, dissolved oxygen, biological oxygen on demand, nitrates, phosphates, fecal coliform, and temperature turbidity). Overall, the WQI for the four forest reserves reflect poor to medium water quality. Results compared with US Environmental Protection Agency and World Health Organization drinking water standards indicate varying levels of contamination at most sites and all designated drinking water sources, with signatures of elevated nitrates, phosphates, and/or fecal coliforms. As critical health problems are known to arise with elevated exposure to contaminants in drinking water, this data set can be used to communicate necessary improvements within the watershed.


Sign in / Sign up

Export Citation Format

Share Document