scholarly journals Formulation Development and Optimization of Sustained Release Microspheres of Acebrophylline

Author(s):  
Niyati Shah ◽  
Ayesha Sheikh ◽  
Hitesh Jain

Objectives: Aim of present work is to prepare and evaluate Sustained release microspheres of Acebrophylline for treatment of Asthma. Experimental work: In present investigation, attempt was made to prepare sustained release microspheres of Acebrophylline with different polymer ratio using Ionic gelation method. Drug- excipient compatibility studies were performed by FTIR. The best suited Microspheres formulation was found on the basis production yield, entrapment efficiency and in vitro release study. Optimized batch of microspheres (B2) was characterized for FTIR, DSC, and SEM analysis. The drug release data of optimized batch was fitted into different release kinetic models. The optimized batch of microspheres (B2) was subjected for the short term stability study at 40 ± 2°C with RH of 75% for a period of 1 month. Results and discussion: There was no interaction found between drug and excipients. Sodium alginate (2%) concentration, Eudragit RS-100 (1:2) ratio gave highest sustainable property and CaCl2 (2.5%) concentration had a good cross linking property. This observation done on the basis of production yield, entrapment efficiency and In vitro release study. The Microspheres prepared from Ionic gelation method had Drug : Eudragit RS100 (1:2), 2 % Sodium alginate and 2.5 % CaCl2 (B2) give 99.2 % drug release over the periods of 12 hr. The drug release from optimized microspheres formulation (B2) follows first order release kinetic. DSC study showed the melting behavior of drug present into microspheres. SEM studies showed that optimized microspheres were spherical and rough surface.  Stability study proved that optimized formulation (B2) was stable. Conclusion:  Drug: Polymer ratio and Volume of CaCl2 had significant effect on % Entrapment efficiency and Drug release. From the Scanning Electron Microscopy (SEM) study observed that microspheres was spherical and rough surface. Non Fickian diffusion was the mode of drug release from Acebrophylline- loaded microspheres. After stability study no physical changes & almost same drug release was observed in microspheres. Hence, the formulation B2 was stable.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Bhavin K. Patel ◽  
Rajesh H. Parikh ◽  
Pooja S. Aboti

Objective. The main objective of the present investigation was to develop and optimize oral sustained release Chitosan nanoparticles (CNs) of rifampicin by design of experiment (DOE). Methodology. CNs were prepared by modified emulsion ionic gelation technique. Here, inclusion of hydrophobic drug moiety in the hydrophilic matrix of polymer is applied for rifampicin delivery using CN. The 23 full-factorial design was employed by selecting the independent variables such as Chitosan concentration (X1), concentration of tripolyphosphate (X2), and homogenization speed (X3) in order to achieve desired particle size with maximum percent entrapment efficiency and drug loading. The design was validated by checkpoint analysis, and formulation was optimized using the desirability function. Results. Particle size, drug entrapment efficiency, and drug loading for the optimized batch were found to be 221.9 nm, 44.17 ± 1.98% W/W, and 42.96 ± 2.91% W/W, respectively. In vitro release data of optimized formulation showed an initial burst followed by slow sustained drug release. Kinetic drug release from CNs was best fitted to Higuchi model. Conclusion. Design of Experiment is an important tool for obtaining desired characteristics of rifampicin loaded CNs. In vitro study suggests that oral sustained release CNs might be an effective drug delivery system for tuberculosis.


Author(s):  
Dilip Kumar Gupta ◽  
B K Razdan ◽  
Meenakshi Bajpai

The present study deals with the formulation and evaluation of mefloquine hydrochloride nanoparticles. Mefloquine is a blood schizonticidal quinoline compound, which is indicated for the treatment of mild-to-moderate acute malarial infections caused by mefloquine-susceptible multi-resistant strains of P. falciparum and P. vivax. The purpose of the present work is to minimize the dosing frequency, taste masking toxicity and to improve the therapeutic efficacy by formulating mefloquine HCl nanoparticles. Mefloquine nanoparticles were formulated by emulsion diffusion method using polymer poly(ε-caprolactone) with six different formulations. Nanoparticles were characterized by determining its particle size, polydispersity index, drug entrapment efficiency, drug content, particle morphological character and drug release. The particle size ranged between 100 nm to 240 nm. Drug entrapment efficacy was >95%. The in-vitro release of nanoparticles were carried out which exhibited a sustained release of mefloquine HCl from nanoparticles up to 24 hrs. The results showed that nanoparticles can be a promising drug delivery system for sustained release of mefloquine HCl.


Author(s):  
Nagratna Dhople ◽  
P N Dandag ◽  
A P Gadad ◽  
C K Pandey ◽  
Masthiholimath V S

A gastroretentive sustained release system of itopride hydrochloride was formulated to increase the gastric residence time and modulate its release behavior. Itopride hydrochloride is a prokinetic drug used in the treatment of gastroeosophageal reflux disease, Non-ulcer dyspepsia and as an antiemetic. Hence, itopride hydrochloride beads were prepared by emulsion gelation method by employing low methoxy pectin and sodium alginate as sustained release polymers in three different ratios alone and in combination and sunflower oil was used to enable floating property to the beads. The effect of variation in polymer and their concentration was investigated. The beads were evaluated for production yield, particle size, swelling index, density measurement, buoyancy, drug content, drug entrapment efficiency, in vitro release characteristics and release kinetic study. Based on drug entrapment efficiency, buoyancy, swelling and in vitro release, F9 was selected as the optimized formulation. F9 was further subjected to surface morphology by SEM, in vitro release comparison with marketed formulation, in vivo floating study in rabbits and stability study for 90 days. In vitro release follows zero order and fitted in Korsmeyer peppas model (Non-Fickian release). Therefore, the rate of drug release is due to the combined effect of drug diffusion and polymer swelling. The in vivo X-ray studies revealed that the beads were floating in the rabbit stomach up to 10 hours. Thus, it was concluded that the sustained release formulation containing itopride hydrochloride was found to improve patient compliance, minimize the side effects and decrease the frequency of administration.


2020 ◽  
pp. 1-9
Author(s):  
Yunhong Wang ◽  
Rong Hu ◽  
Yanlei Guo ◽  
Weihan Qin ◽  
Xiaomei Zhang ◽  
...  

OBJECTIVE: In this study we explore the method to prepare tanshinone self-microemulsifying sustained-release microcapsules using tanshinone self-microemulsion as the core material, and chitosan and alginate as capsule materials. METHODS: The optimal preparation technology of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules was determined by using the orthogonal design experiment and single-factor analysis. The drug loading and entrapment rate were used as evaluation indexes to assess the quality of the drug, and the in vitro release rate was used to evaluate the drug release performance. RESULTS: The best technology of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules is as follows: the concentration of alginate is 1.5%, the ratio of tanshinone self-microemulsion volume to alginate volume to chitosan mass is 1:1:0.5 (ml: ml: g), and the best concentration of calcium chloride is 2.0%. To prepare the microcapsules using this technology, the drug loading will be 0.046%, the entrapment rate will be 80.23%, and the 24-hour in vitro cumulative release rate will be 97.4%. CONCLUSION: The release of the microcapsules conforms to the Higuchi equation and the first-order drug release model and has a good sustained-release performance.


1970 ◽  
Vol 8 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Mohammad Nezab Uddin ◽  
Ishtiaq Ahmed ◽  
Monzurul Amin Roni ◽  
Muhammad Rashedul Islam ◽  
Mohammad Habibur Rahman ◽  
...  

The objective of this study was to design oral sustained release matrix tablets of Ranolazine usinghydroxypropyl methylcellulose (HPMC) as the retardant polymer and to study the effect of formulation factors suchas polymer proportion and polymer viscosity on the release of drug. In vitro release studies were performed usingUSP type II apparatus (paddle method) in 900 mL of 0.1N HCl at 100 rpm for 12 hours. The release kinetics wasanalyzed using the zero-order, first order, Higuchi and Korsmeyer-Peppas equations to explore and explain themechanism of drug release from the matrix tablets. In vitro release studies revealed that the release rate decreasedwith increase in polymer proportion and viscosity grade. Mathematical analysis of the release kinetics indicated thatthe nature of drug release from the matrix tablets was dependent on drug diffusion and polymer relaxation andtherefore followed non-Fickian or anomalous release. The developed controlled release matrix tablets of Ranolazineprepared with high viscosity HPMC extended release up to 12 hours.Key words: Ranolazine; Sustained release; Methocel E50 Premium LV; Methocel K100LV CR; Methocel K4M CR;Methocel K15M CR.DOI: 10.3329/dujps.v8i1.5333Dhaka Univ. J. Pharm. Sci. 8(1): 31-38, 2009 (June)


Author(s):  
Pearl Pires Dighe ◽  
Tank Hm

 Objective: The current study involves the fabrication of oral bilayer matrix designs of a combination of two drugs, metoprolol succinate and atorvastatin calcium, the optimization of their in vitro release and characterization using the design expert software. Metoprolol succinate, a β1- selective adrenergic receptor blocking agent, is used in the management of hypertension has a half-life of approximately 4–5 h; thus, there is the need to use extended-release formulation for prolonged action. Atorvastatin is a hydroxymethylglutaryl-coenzyme A reductase inhibitor, an antilipidemic, used to lower blood cholesterol. The rationale for this fixed-dose combination is to coadminister two drugs acting by different mechanisms of action together, reduce dosing frequency, and increase patient compliance.Methods: A 32 factorial design was selected to analyze the effect of critical factors, polymer concentration of Kollidon sustained release (SR), and Eudragit RS and their interaction on the in vitro release of the SR part containing metoprolol succinate. The drug release at 2 h (Q2), 8 h (Q8), and 20 h (Q20) was taken as responses. The blends of both layers were prepared, evaluated for precompression characteristics, and compressed by direct compression. The compressed bilayer tablets were evaluated for their hardness, weight variation, friability, content uniformity, diameter, and in vitro release.Result and Conclusion: The release profile indicates Higuchi’s kinetics. Contour and surface response plots show significant interaction among the formulation variables. Formulation MS06 containing 70 mg Kollidon SR and 10 mg Eurdragit RS was found to be the optimized formulation, controlling the drug release for a 24 h period.


Author(s):  
Somasundaram I

Aims and Objectives: The present study is to formulate the nanosuspension containing a hydrophilic drug pramipexole dihydrochloride and hesperidin and to increase the drug entrapment efficiency.Methods: Hesperidin and pramipexole dihydrochloride loaded in chitosan nanosuspension is prepared by ionic gelation method using chitosan and tripolyphosphate. There was no incompatibility observed between the drug and polymer through Fourier transform infrared and differential scanning calorimetric. Various other parameters such as particle size, zeta potential, scanning electron microscope, drug content, drug entrapment efficiency, and in vitro release have been utilized for the characterization of nanoparticles.Results and Discussion: The average size of particle is 188 nm; zeta potential is 46.7 mV; drug content of 0.364±0.25 mg/ml; entrapment efficiency of 72.8% is obtained with HPN3 formulation. The PHC1 shows the highest drug release followed by PHC2 due to low concentration of polymer and PHC4 and PHC5 show less drug release due to high concentration of polymer. The in vitro release of PHC3 is 85.2%, initial the burst release is shown which is approximately 60% in 8 h; then, slow release later on drastic reduction in release rate is shown in 24 h. The in vivo study histopathological report confers the effective protective against rotenone induces Parkinson’s.Conclusion: PHC3 was chosen as the best formulation due to its reduced particle size and controlled release at optimum polymer concentration which may be used to treat Parkinson’s disease effectively..


2003 ◽  
Vol 71 (4) ◽  
pp. 357-364
Author(s):  
Sevgi Gūngör ◽  
Mine Orlu ◽  
Yildiz Özsoy ◽  
Ahmet Araman

The objective of this study was to evaluate the performance of Sucro Ester 7 (sucrose distearate) as additive for preparing sustained release suppositories of tiaprofenic acid. Suppocire AIM (semi-synthetic glycerides) was used as suppository base and formulations were prepared containing different ratios of sugar ester: Suppocire AIM. Content uniformity, disintegration time and in vitro release characteristics of suppositories were investigated. Significant decrease in the extent of drug release was observed with the increase in the content of sugar ester, which was due to the longer disintegration time of suppositories.


Author(s):  
Sushant Kumar ◽  
Satheesh Madhav N V ◽  
Anurag Verma ◽  
Kamla Pathak

The purpose of this research was to isolate the smart biopolymer from the fruit pulp of Fragaria × ananassa (garden strawberry). We isolated natural fruit pulp to evaluate the potentiality of biopolymer in delivery of nanosized lamotrigine as an antiepileptic drug. Lamotrigine was nanosized by screening its nano-size particle by UV method. The nanosized lamotrigine was used for preparation of bionanoparticles (LF1-LF8) by sonication method. The isolated biopolymer was characterized for DSC, FTIR, NMR, Mass and Zeta particle size analysis. The obtained results confirm its polymeric nature in different analysis. The prepared bionanoparticles showed the release of lamotrigine in sustained manner over 36 hours. The release kinetic study was done by using the BIT-SOFT 1.12 software and T50% and T80%, r2 were calculated. All the formulation showed more than 99.78% drug release. The In-vitro release study of different formulations showed the % drug release from 90.92% to 99.78%. The different formulations were evaluated for the In-vitro release study and release kinetic was studied. The formulation LF5 was found to be the best formulation having T50% of 17 hours and T80% of 29 hours with r2 value of 0.9925. The best formulation LF5 showed up to 90.925% drug release over 36 hours. According to the release kinetic study, the best-fit model was found to be Koresmayer-Peppas and the mechanism of drug release was found to be anomalous transport. The results obtained from different evaluations like percentage entrapment efficiency, particle size, release study, kinetic studies and stability study revealed that isolated biopolymer has good potentiality to form bionanoparticles and it can be safely used as an alternative to synthetic and semisynthetic polymers for the preparation of lamotrigine loaded stable bionanoparticles


Author(s):  
Surendra Singh Saurabh ◽  
Roshan Issarani ◽  
Nagori Bp

Objective: In the present dissertation work, the aim was to prepare self-emulsifying drug delivery systems (SEDDS) of etoricoxib to improve its solubility with a view to enhance its oral bioavailability.Methods: The prepared SEDDS was the concentrate of drug, oil, surfactants, and cosurfactant. The formulation was evaluated for various tests such as solubility, globule size, thermodynamic stability study, pH determination, ease of dispersibility, uniformity index, drug content, in-vitro release study, and in-vitro permeation study.Results: The optimized formulation F6 showed drug release (79.21±2.73%), droplet size (0.546 μm). In vitro drug release of the F6 was highly significant (p<0.05) as compared to the plain drug.Conclusion: All formulations of etoricoxib SEDDS were showed faster dissolution than plain drug (p<0.05), mean bioavailability of etoricoxib increase in respect to the plain drug. The F6 can be further used for the preparation of various solid SEDDS formulations.


Sign in / Sign up

Export Citation Format

Share Document