scholarly journals Effect of Hydrophilic Carriers for Solubility and Dissolution Enhancement of Sulfamerazine by Solid Dispersions Technique

Author(s):  
Jitendra Gupta ◽  
Reena Gupta

Aims: The present research was carried out to investigate the effect of hydrophilic carriers in enhancing the solubility and dissolution rate of Sulfamerazine (SMZ) employing the fusion technique of solid dispersions (SD). Methodology: SMZ is an oral antibacterial drug exhibiting a poor dissolution profile and water solubility. SD of SMZ was prepared using poloxamer 407 (PX407) and Polyethylene glycol 6000 (PEG6000) as a hydrophilic carrier by employing the fusion technique. Results: The powder SDs were subjected for solubility, Fourier transform infrared spectrometry (FTIR), Differential scanning calorimetry (DSC), in-vitro dissolution profile, Scanning electron microscopy (SEM), and X-ray diffraction (XRD) study. The FTIR spectral analysis showed no significant incompatibility between drug and carriers and confirmed the presence of SMZ. From XRD and DSC, SMZ indicated the amorphous form in solid dispersion with larger specific surface area, resulting in a better in-vitro rate of dissolution of the drug from solid dispersions than pure drug. However, SD of PX407 (SDSMFF8) indicated higher aqueous solubility than pure SMZ. Further, SDSMFF7 showed higher in-vitro drug release 96.45±0.3% within 60 minutes, and pure drug (18.54±0.8%). Conclusion: In conclusion, enhancing thesolubility and dissolution of SMZ using hydrophilic carriers by solid dispersion technique provides new strategies for broadening its potential clinical application.

Author(s):  
Srinivas Martha ◽  
singh Dr. Anoop

Dolutegravir is a HIV-1 antiviral agent to control HIV/AIDS. In the present study Dolutegravir solid dispersion has been subjected to improve the solubility and dissolution rate performance by formulating as fast dissolving tablets, in which PEG 6000 and Poloxamer 407 were used as polymers. Solid dispersions of Dolutegravir were prepared with different carriers in different ratios of drug and carriers such as PEG 6000 and Poloxamer 407 (1:1, 1:2 and 1:3) by solvent evaporation and fusion method. The pre-compression and post-evaluation parameters were studied and the results were shown. All the results were within acceptable IP limits Finally, by comparing all the dissolution profile of solid dispersions , formulation F3 containing Dolutegravir + PEG 6000 (1:3) showed better results by solvent evaporation method at the end of 60 min with maximum drug release, hence it is selected as the best formulation. From the obtained optimized solid dispersion formulation, the fast dissolving tablets were prepared by using different concentrations of various super disintegrants. The in-vitro drug releases of the formulated Dolutegravir tablets were performed using a 6.8 pH Phosphate buffer as dissolution medium. The optimized DF3 formulation containing Sodium starch glycolate (SSG) (6% w/w) as super disintegrant, and it showed 98.04±1.9 % percentage drug release at 25 min. Characterization in solid-state were done by analytical methods such as UV-Visible, FT-IR studies. The optimized formulation followed first order release kinetics.


Author(s):  
Samer K. Ali ◽  
Eman B. H. Al-Khedairy

            Atorvastatin (ATR) is poorly soluble anti-hyperlipidemic drug; it belongs to the class II group according to the biopharmaceutical classification system (BCS) with low bioavailability due to its low solubility. Solid dispersions adsorbate is an effective technique for enhancing the solubility and dissolution of poorly soluble drugs.           The present study aims to enhance the solubility and dissolution rate of ATR using solid dispersion adsorption technique in comparison with ordinary solid dispersion. polyethylene glycol 4000 (PEG 4000), polyethylene glycol 6000 (PEG 6000), Poloxamer188 and Poloxamer 407were used as hydrophilic carriers and Aerosil 200, Aerosil 300 and magnesium aluminium silicate (MAS) as adsorbents.            All solid dispersion adsorbate (SDA) formulas  were prepared in ratios of 1:1:1  (drug: carrier: adsorbent) and evaluated for their water solubility, percentage yield, drug content,  , dissolution, crystal structure using  X-ray powder diffraction (XRD) and Differential Scanning Calorimetry (DSC)  studies and Fourier Transform Infrared Spectroscopy (FTIR) for determination the drug-carrier- adsorbate interaction.                The prepared (SDA) showed significant improvement of drug solubility in all prepared formula. Best result was obtained with formula SDA12(ATR :Poloxamer407 : MAS 1:1:1) that showed 8.07 and 5.38  fold increase in solubility compared to  solubility of pure ATR and  solid dispersion(SD4) (Atorvastatin: Poloxamer 407 1:1) respectively due to increased wettability and reduced crystallinity of the drug which leads to improve drug solubility  and  dissolution .


2021 ◽  
Vol 9 (2) ◽  
pp. 127-135
Author(s):  
Anil Raosaheb Pawar ◽  
Pralhad Vitthalrao Mundhe ◽  
Vinayak Kashinath Deshmukh ◽  
Ramdas Bhanudas Pandhare ◽  
Tanaji Dilip Nandgude

The aim of the present study was to formulate solid dispersion (SD) of Mesalamine to enrich the aqueous solubility and dissolution rate. Mesalamine is used in the management of acute ulcerative colitis and for the prevention of relapse of active ulcerative colitis. In the present study, Solid dispersion of Mesalamine was prepared by Fusion and Solvent evaporation method with different polymers. SD’s were characterized by % practical yield, drug content, Solubility, FT-IR, PXRD (Powder X- ray diffractometry), SEM (Scanning electron microscopy), in vitro dissolution studies and Stability studies. The percent drug release of prepared solid dispersion of Mesalamine by fusion and solid dispersion method (FM47, FM67, SE47 and SE67) in 1:7 ratio was found 81.36±0.41, 86.29±0.64, 82.45±0.57and 87.25±1.14 respectively. The aqueous solubility and percent drug release of solid dispersion of Mesalamine by both methods was significantly increased. The PXRD demonstrated that there was a significant decrease in crystallinity of pure drug present in the solid dispersions, which resulted in an increased aqueous solubility and dissolution rate of Mesalamine.The significant increase in aqueous solubility and dissolution rate of Mesalamine was observed in solid dispersion as the crystallinity of the drug decreased, absence of aggregation and agglomeration, increased wetability and good dispersibility after addition of PEG 4000 and PEG 6000.


2012 ◽  
Vol 1 (12) ◽  
pp. 423-430 ◽  
Author(s):  
Md. Sariful Islam Howlader ◽  
Jayanta Kishor Chakrabarty ◽  
Khandokar Sadique Faisal ◽  
Uttom Kumar ◽  
Md. Raihan Sarkar ◽  
...  

The aim of the present study was to improve the solubility and dissolution rate of a poorly water-soluble drug by a solid dispersion technique, in order to investigate the effect of these polymers on release mechanism from solid dispersions. Diazepam was used as a model drug to evaluate its release characteristics from different matrices. Solid dispersions were prepared by using polyethylene glycol 6000 (PEG-6000), HPMC, HPC and Poloxamer in different drug-to-carrier ratios (1:2, 1:4, 1:6, 1:8, 1:10). The solid dispersions were prepared by solvent method. The pure drug and solid dispersions were characterized by in vitro dissolution study. Distilled water was used as dissolution media, 1000 ml of distilled water was used as dissolution medium in each dissolution basket at a temperature of 37°C and a paddle speed of 100 rpm. The very slow dissolution rate was observed for pure Diazepam and the dispersion of the drug in the polymers considerably enhanced the dissolution rate. This can be attributed to improved wettability and dispersibility, as well as decrease of the crystalline and increase of the amorphous fraction of the drug. SEM (Scanning Electron microscope) studies shows that the solid dispersion having a uniform dispersion. Solid dispersions prepared with PEG-6000, Poloxamer showed the highest improvement in wettability and dissolution rate of Diazepam. Solid dispersion containing polymer prepared with solvent method showed significant improvement in the release profile as compared to pure drug, Diazepam.DOI: http://dx.doi.org/10.3329/icpj.v1i12.12453 International Current Pharmaceutical Journal 2012, 1(12): 423-430


Author(s):  
Rahul Radke ◽  
Neetesh K. Jain

Aim: Ambrisentan is a endothelin type A selective receptor antagonist used in the management of pulmonary arterial hypertension. Ambrisentan is BCS Class II drug haves very poor solubility in water and shows incomplete absorption after oral administration. The present work was aimed to study the effect of amphiphilic graft co-polymer carrier on enhancement of solubility and dissolution rate of poorly water soluble drug ambrisentan. To improve the aqueous solubility of ambrisentan solid dispersion was formulated by using novel carrier amphiphilic graft co-polymer (Soluplus® ). Materials and Methods: Solid dispersion was prepared by kneading technique by utilizing various ratios of carrier. Obtained solid dispersions ware evaluated for solubility, percentage yield, drug content and in vitro dissolution study. Powder characterization was performed by infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). Results: FTIR spectroscopy shows no interaction between drug and polymer. DSC study showed that endothermic peak of drug was completely disappeared in Solid dispersion suggesting complete miscibility of drug in Soluplus®. XRD study suggest the conversion of crystalline ambrisentan in to amorphous form. All solid dispersions prepared with Soluplus® as a carrier showed increase in solubility. Solubility of ambrisentan was found to be increased 7.17 fold in optimized SD formulation ASD5. In vitro dissolution study showed the faster drug release from SD formulation compare to its pure form. All solid dispersion formulation’s release more than 50% of drug in first 10 min. Conclusion: This study conclude that the preparation of amphiphilic graft co-polymer based solid dispersion prepared by kneading technique is found to be useful in enhancement the solubility and dissolution rate of ambrisentan.


Author(s):  
Sanjesh G. Rathi ◽  
Dhruv B. Chaudhari

The solid dispersions of Bilastine with HPMC, PVP K30 and HPC have been prepared in different weight ratios by using solvent evaporation method. DSC was used to characterize the samples of solid dispersions and pure drug. Drug found compatible with the excipients. The highest improvements in solubility and in-vitro drug release were observed in solid dispersion prepared with HPC (F14) by solvent evaporation method. The increased dissolution rate of drug from solid dispersion may be due to surface tension lowering effect of polymer to the medium and increased wettability and dispersibility of drug. Hence, F14 Solid dispersion with the HPC carrier considered as most satisfactory among all solid dispersions.


Author(s):  
B Sangameswaran ◽  
M Gomathi

The poor solubility of drug substances in water and their low dissolution rate in aqueous G.I.T fluid often leads to insufficient bioavailability. As per Biopharmaceutical Classification System (BCS), Olmesartan belongs to the class-II category having poor solubility and high permeability. Since only dissolved drug can pass the gastrointestinal membrane, the proper solubility of the drug is ultimately desired. Its oral bioavailability is 26%. Hence, an attempt was made to enhance its solubility by formulating solid dispersions using different techniques viz., Melting, Kneading, Co-precipitation, Solvent evaporation and Physical mixing etc., Drug and carrier (Urea) in different ratios like 1: 1, 1: 2, 1: 3 and 1:4 were used for formulating solid dispersions. The compatibility of the drug with the carrier was checked by FTIR studies, these results revealed that there was no interaction between them. The angle of repose, bulk density, tapped density; Carr’s index and Hausner ratio were calculated for the micrometric characterization of all the solid dispersions. The drug content was found to be high and uniform in all formulations. The prepared Solid dispersion SEM4 (1:4) showed minimal wetting time of 13 seconds compared with the other formulations. In vitro dissolution, release studies in Phosphate buffer pH of 6.8 revealed that the prepared solid dispersions showed faster drug release compared with the pure drug.  The in vitro dissolution profile showed ascendency on increasing the carrier concentration


Author(s):  
Ankit Rampal ◽  
Manmeet Singh ◽  
Shanta Mahajan ◽  
Neena Bedi

Objective: The aim of the present study was to investigate the effect of novel polymeric carriers and to develop solid dispersion formulation that could improve in vitro profile of Fenofibrate (FB). Methods: Spray drying technique was used to fabricate solid dispersions with hydrophilic carriers, mainly hydroxypropyl methylcellulose (HPMC) and hydroxypropyl methylcellulose acetate succinate (HPMCAS). Solid dispersions in the form of spray-dried powder were characterized with respect to the pure drug and the corresponding physical mixtures by optical microscopy, x-ray diffraction (XRD), fourier transform infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC). Size and morphology of optimized solid dispersion were performed by scanning electron microscopy (SEM). Furthermore, in vitro dissolution comparisons were carried out between the optimized solid dispersion against the pure drug and the physical mixtures. Results: Solubility studies demonstrated that the solubility of FB was not affected by pH change. The transformation of crystalline FB into an amorphous solid dispersion powder has been clearly demonstrated by optical microscopy. The molecular dispersion of drug in the dispersion matrix prepared by spray drying was confirmed in XRD and DSC studies. IR spectroscopy was observed with negligible incompatibility of the drug with polymers. Spherical morphology was observed in SEM with no evidence of FB crystals. The prepared solid dispersions exhibited dissolution improvement as compared to the pure drug and spray dried FB in 0.05 M SLS, with HPMCAS as the superior carrier over HPMC. Conclusion: The present study vouches better in vitro profile of FB from spray-dried HPMCAS based solid dispersions.


Author(s):  
ABHIK KAR ◽  
ABDUL BAQUEE AHMED

Objective: The present study was aimed to enhance the solubility of poorly water soluble drug Ibuprofen using solid dispersion technique and to develop sustained release tablets containing solid dispersion granules of the optimized batch. Ibuprofen is a non-steroidal anti-inflammatory drug (NSAID) with analgesic, antipyretic, and anti-inflammatory propertiesMethods: Solid dispersions of Ibuprofen were prepared by using PEG 20000 and Poloxamer 407 in different weight ratios by fusion and solvent evaporation method. Drug-carrier physical mixtures were also prepared. Solid dispersions were characterized by saturation solubility, drug content, in vitro dissolution, FTIR and DSC analysis. Solid dispersion formulation, SDF9 (PEG 20000 and Poloxamer 407, 1:3:3) prepared by solvent evaporation method was considered as the optimized batch. Sustained release tablets containing the solid dispersion granules of the optimized batch were prepared by direct compression method using HPMC K100M at three concentrations (10%, 14%, 18% w/w). The prepared formulations were evaluated for hardness, thickness, weight variation, friability, in vitro dissolution studies and release kinetics modelling.Results: Solid dispersion formulation, SDF9showed 95.09% drug release in 60 min and considered as the optimized batch. Tablet formulation, FT3 (HPMC K100M 18% w/w) showed 96% drug release for 12 h.Conclusion: Solid dispersions of ibuprofen using a combination of PEG 20000 and poloxamer 407 by solvent evaporation method may result in higher aqueous solubility of the drug. Also sustained release tablets containing solid dispersion granules of ibuprofen, using HPMC K100M may be a promising approach to extend the release rate of the drug from the solid dispersion for 12 h.


Author(s):  
Viswanadh Kunam ◽  
Vidyadhara Suryadevara ◽  
Devala Rao Garikapati ◽  
Venkata Basaveswara Rao Mandava ◽  
RLC Sasidhar

Objective: In the present investigation, an attempt was made to improve the surface characters and solubility of the drug by solid dispersion and coating it on the nonpareil sugar beads as pellets. Methods: Ezetimibe solid dispersions were prepared by kneading method using soluplus. Crospovidone was added as a disintegrant in pellets. Ezetimibe pellets were prepared by dissolving soluplus and crospovidone in ethanol in different ratios and coated on nonpareil sugar beads as a drug layer by pan coating technique. Various physicochemical parameters like particle size, friability, angle of repose and drug content were evaluated for the prepared solid dispersions and pellet formulations. In vitro dissolution studies were carried out in 1% SLS using USP apparatus II. FTIR and SEM analysis were performed for solid dispersions, pellet formulations and its polymers to determine the interactions and surface characteristics. Results: The physicochemical parameters were within the specified I. P limits. It was observed that the solid dispersion formulation ED5 showed better dissolution rate to the extent of 1.07 folds and 1.95 folds when compared to a marketed formulation and the pure drug, respectively. Similarly, pellet formulation EP5 containing 1:5 ratio of ezetimibe to soluplus showed an improved dissolution rate to the extent of 1.173 folds and 2.136 folds when compared to the marketed formulation and the pure drug, respectively. FTIR analysis revealed that there was no major interaction between the drug and the excipients.  Conclusion: From the present study, it was observed that the solubility of ezetimibe was enhanced by soluplus in pellet formulations when compared to solid dispersions.


Sign in / Sign up

Export Citation Format

Share Document