scholarly journals Formulation and Evaluation of Transferosomes Loaded with an Anti-Hyperlipidemic Drug

Author(s):  
R. Pravalika ◽  
E. Hima Bindu ◽  
V. T. Iswariya ◽  
Sowjanya Battu

The primary goal of this research is to create transferosome formulations that contain an anti-hyperlipidemic medication. Simvastatin, the medication employed in the formulation, has a low bioavailability of 60% and undergoes substantial hepatic degradation. These are the deformable nano-vesicles which can deliver both hydrophilic and hydrophobic drugs through transdermal route to enhance the Bioavailability of drugs which undergoes extensive hepatic metabolism when given through oral route which can increase patient compliance. Transferosomes are prepared and characterized by various evaluation tests like  SEM analysis, vesicular size,  surface morphology. After all evaluations done,  Out of 12 formulations F2 formulation showed more entrapment efficiency. The reason for this is that there are more phospholipids present, and as the surfactant concentration rises, medication release becomes more rapid. Our main goal is to improve bioavailability, which can be accomplished by optimising the concentrations of phospholipid and surfactant in this drug delivery system, resulting in a controlled release of drug.

Author(s):  
Allam Sasikala

The drugs mostly present are available with less bioavailability  and the problem arises with less permeation or solubility  so extensive work is done to enhance these mechanisms. Not only that drugs should pass hepatic metabolism, Inorder to improve its bioavailability they are formulated as transferosomes which can improve the patient compliance by delivering the drug through the transdermal-route. Soya lecithin is used as a phospholipid whereas Tween 60, Tween 80, Span 60 and Span 80 are used as edge activators. These formulations usually showed more entrapment efficiency. The reason behind this is due to the presence of more phospholipids and as the surfactant concentration increases drug release will be rapid. As our main aim is to enhance the bioavailability this can be achieved by optimizing the concentrations of phospholipid and surfactant one can attain a controlled release of drug through this drug delivery system.


Author(s):  
Anamika Saxena Saxena ◽  
Santosh Kitawat ◽  
Kalpesh Gaur ◽  
Virendra Singh

The main goal of any drug delivery system is to achieve desired concentration of the drug in blood or tissue, which is therapeutically effective and nontoxic for a prolonged period. Various attempts have been made to develop gastroretentive delivery systems such as high density system, swelling, floating system. The recent developments of FDDS including the physiological and formulation variables affecting gastric retention, approaches to design single-unit and multiple-unit floating systems, and their classification and formulation aspects are covered in detail. Gastric emptying is a complex process and makes in vivo performance of the drug delivery systems uncertain. In order to avoid this variability, efforts have been made to increase the retention time of the drug-delivery systems for more than 12 hours. The floating or hydrodynamically controlled drug delivery systems are useful in such application. Background of the research: Diltiazem HCL (DTZ), has short biological half life of 3-4 h, requires rather high frequency of administration. Due to repeated administration there may be chances of patient incompliance and toxicity problems. Objective: The objective of study was to develop sustained release alginate beads of DTZ for reduction in dosing frequency, high bioavailability and better patient compliance. Methodology: Five formulations prepared by using different drug to polymer ratios, were evaluated for relevant parameters and compared. Alginate beads were prepared by ionotropic external gelation technique using CaCl2 as cross linking agent. Prepared beads were evaluated for % yield, entrapment efficiency, swelling index in 0.1N HCL, drug release study and SEM analysis. In order to improve %EE and drug release, LMP and sunflower oil were used as copolymers along with sodium alginate.


2020 ◽  
Vol 14 (4) ◽  
pp. 351-359
Author(s):  
Shubham Shrestha ◽  
Sankha Bhattacharya

Drug delivery for a long time has been a major problem in the pharmaceutical field. The development of a new Nano-carrier system called nanosponge has shown the potential to solve the problem. Nanosponge has a porous structure and can entrap the drug in it. It can carry both hydrophilic and hydrophobic drugs. They also provide controlled release of the drugs and can also protect various substances from degradation. Nanosponge can increase the solubility of drugs and can also be formulated into an oral, topical and parenteral dosage form. The current review explores different preparation techniques, characterization parameters, as well as various applications of nanosponge. Various patents related to nanosponge drug delivery system have been discussed in this study.


RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 2656-2663
Author(s):  
Boye Zhang ◽  
Qianqian Duan ◽  
Yi Li ◽  
Jianming Wang ◽  
Wendong Zhang ◽  
...  

The system is pH-responsive and redox-controlled release. And the charge reversal and size transitions of the system can enhance the targeted ability. Moreover, the system can recognize the cancer cells by the fluorescence imaging.


2018 ◽  
Vol 553 (1-2) ◽  
pp. 169-185 ◽  
Author(s):  
Primiano Pio Di Mauro ◽  
Anna Cascante ◽  
Pau Brugada Vilà ◽  
Vanessa Gómez-Vallejo ◽  
Jordi Llop ◽  
...  

Author(s):  
Anupam K Sachan ◽  
Saurabh Singh ◽  
Kiran Kumari ◽  
Pratibha Devi

Microspheres carrier system made from natural or synthetic polymers used in sustained release drug delivery system. The present study involves formulation and evaluation of floating microspheres of Curcumin for improving the drug bioavailability by prolongation gastric residence time. Curcumin, natural hypoglycemic agent is a lipophilic drug, absorbed poorly from the stomach, quickly eliminated and having short half-life so suitable to formulate floating drug delivery system for sustained release. Floating microspheres of curcumin were formulated by solvent evaporation technique using ethanol and dichloromethane (1:1) as organic solvent and incorporating various synthetic polymers as coating polymer, sustain release polymers and floating agent. The final formulation were evaluated various parameters such as compatibility studies, micrometric properties, In-vitro drug release and % buoyancy. FTIR studies showed that there were no interaction between drug and excipients. The surface morphology studies by SEM confirmed their spherical and smooth surface. The mean particles size were found to be 416-618µm, practical yield of microspheres was in the range of 60.21±0.052% - 80.87±0.043%, drug entrapment efficiency 47.4±0.065% - 77.9±0.036% and % buoyancy 62,24±0.161% - 88.63±0.413%. Result show that entraptmency increased as polymer (Eudragit RS100) conc. Increased. The drug release after 12 hrs. was 72.13% - 87.13% and it decrease as a polymer (HPMC, EC) concentration was decrease.


2019 ◽  
Vol 45 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Jiaojiao Yu ◽  
Qiongyan Wang ◽  
Haofan Liu ◽  
Xiaosong Shan ◽  
Ziyan Pang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document