scholarly journals Water Balance Estimation Using Integrated GIS-Based WetSpass Model in the Birki Watershed, Eastern Tigray, Northern Ethiopia

Author(s):  
Esayas Meresa ◽  
Abbadi Girmay ◽  
Amare Gebremedhin

This study aims to estimate long-term average annual and seasonal water balance components for Birki watershed using WetSpass model with the integrated geospatial modeling approach with ten years’ hydro-meteorological and biophysical data of the watershed. Both primary and secondary data were collected using both field survey and disk-based data collection methods. The WetSpass model was used for data analysis purposes. The finding showed that in the summer season the annual groundwater recharge is 24.1 mm year-1 (96.5%), winter season mean groundwater recharge is 0.8 mm year-1 (3.5%) and yearly mean groundwater recharge is 24.9 mm year-1, Surface runoff yearly mean value is 40.6 mm year-1, Soil evaporation yearly mean value is 10.8 mm year-1, Evapotranspiration yearly mean value is 60.8 mm year-1, Intersection loss yearly mean value is 17 mm year-1, and Transpiration loss yearly value is 6.8 mm year-1 in the entire watershed. The mean annual precipitation, which is 573 mm, is contributed to 7.4%, 7.1% and 85.5% recharge to the groundwater, to surface runoff, and evapotranspiration, respectively. Annually 1.1205 million m3 water recharges into the groundwater table as recharge from the precipitation on the entire watershed. The contribution of this study could be used as baseline information for regional water resource experts, policy makers and researchers for further investigation. It can also be concluded that integrated WetSpass and GIS-based models are good indicators for estimating and understanding of water balance components in a given watershed to implement an integrated watershed management plan for sustainable utilization and sustainable development.

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Abera Shigute Nannawo ◽  
Tarun Kumar Lohani ◽  
Abunu Atlabachew Eshete

The alteration of spatial patterns of landscape interrupts water balance components in Bilate basin of Ethiopia. The aim is to characterize the spatio-temporal variation of surface-subsurface hydrological water balance using the WetSpass model comprising of soil type, topography, groundwater depth, and slope. Environment for Visualizing Images (ENVI) and Arc-GIS software were assimilated for the classification of Landsat images from 1989 to 2019 replicating the forest, shrub, and grasslands which decrease by 4.0%, 9.41%, and 14.87%, respectively, and agricultural land increasing by 27.06% from 1989 to 2019. The goodness of fit in surface runoff and subsurface flow for the two model outputs with the square of regression (R2) of 0.79 and 0.81, while the root mean square errors (RMSEs) 8.26 mm and 8.39 mm for 1989 and 2019, respectively, were calculated. Average annual interception, groundwater recharge, surface runoff, and actual-evapotranspiration were 36.4 mm, 127.34 mm, 614.95 mm, and 517.59 mm, respectively, revealing that WetSpass works remarkably in simulating the components of the hydrological water balance.


2021 ◽  
Vol 29 (7) ◽  
pp. 2411-2428
Author(s):  
Robin K. Weatherl ◽  
Maria J. Henao Salgado ◽  
Maximilian Ramgraber ◽  
Christian Moeck ◽  
Mario Schirmer

AbstractLand-use changes often have significant impact on the water cycle, including changing groundwater/surface-water interactions, modifying groundwater recharge zones, and increasing risk of contamination. Surface runoff in particular is significantly impacted by land cover. As surface runoff can act as a carrier for contaminants found at the surface, it is important to characterize runoff dynamics in anthropogenic environments. In this study, the relationship between surface runoff and groundwater recharge in urban areas is explored using a top-down water balance approach. Two empirical models were used to estimate runoff: (1) an updated, advanced method based on curve number, followed by (2) bivariate hydrograph separation. Modifications were added to each method in an attempt to better capture continuous soil-moisture processes and explicitly account for runoff from impervious surfaces. Differences between the resulting runoff estimates shed light on the complexity of the rainfall–runoff relationship, and highlight the importance of understanding soil-moisture dynamics and their control on hydro(geo)logical responses. These results were then used as input in a water balance to calculate groundwater recharge. Two approaches were used to assess the accuracy of these groundwater balance estimates: (1) comparison to calculations of groundwater recharge using the calibrated conceptual HBV Light model, and (2) comparison to groundwater recharge estimates from physically similar catchments in Switzerland that are found in the literature. In all cases, recharge is estimated at approximately 40–45% of annual precipitation. These conditions were found to closely echo those results from Swiss catchments of similar characteristics.


2018 ◽  
Vol 5 (2) ◽  
pp. 961-975 ◽  
Author(s):  
Gebrerufael Hailu Kahsay ◽  
Tesfamichael Gebreyohannes ◽  
Mewcha Amha Gebremedhin ◽  
Aster Gebrekirstos ◽  
Emiru Birhane ◽  
...  

2021 ◽  
Vol 9 (2) ◽  
pp. 20-33
Author(s):  
Hassan Al-Badry ◽  
Mohammed S. Shamkhi

AbstractGroundwater is an important water source, especially in arid and semi-arid areas. Recharge is critical to managing and analyzing groundwater resources despite estimation difficulty due to temporal and spatial change. The study aim is to estimate annual groundwater recharge for the eastern Wasit Province part, Iraq. Where suffers from a surface water shortage due to the region's high elevation above Tigris River water elevation by about 60 m, it is necessary to search for alternative water sources, such as groundwater use. The spatially distributed WetSpass model was used to estimate the annual recharge. The inputs for the model were prepared using the ARC-GIS program, which includes the topography and slope grid, soil texture grid, land use, groundwater level grid, and meteorological data grids for the study area for the period (2014-2019). The result shows that the annual recharge calculated using the WetSpass model (2014-2019) varied of 0 to 65.176 mm/year at an average of 27.117 mm/year, about 10.8%, while the rate of the surface runoff was 5.2% and Evapotranspiration formed 83.33% of the annual rainfall rate of 251.192 mm. The simulation results reveal that the WetSpass model simulates the components of the hydrological water budget correctly. For managing and planning available water resources, a best grasp of the simulation of long-range average geographical distribution around the water balance components is beneficial.


2020 ◽  
Vol 197 ◽  
pp. 104514 ◽  
Author(s):  
Teklebirhan Arefaine Gebru ◽  
Gebreyesus Brhane Tesfahunegn

2010 ◽  
Vol 5 (No. 4) ◽  
pp. 128-138 ◽  
Author(s):  
P. Kovář ◽  
D. Vaššová

This paper presents results of decadal (10-day) water balance simulations for the vegetation periods (April to October) of 2001 (normal year), 2002 (wet year) and 2003 (dry year) in the Němčick&yacute; Stream experimental catchment (3.52 km<sup>2</sup>). The catchment is a typical agricultural area with a large extent of arable land. This paper shows that the model used (WBCM) is capable of reliably simulating decadal water balance components for the actual land use. The same model is then used to estimate water balance changes brought about when 10% of arable land has been transformed into permanent grassland. It is shown that this land use change results in a pronounced reduction of surface runoff and an increase in subsurface storage over the vegetation periods of all three years. The vegetation period groundwater runoff was only enhanced in the wet year, while the total runoff was reduced in all three years.&nbsp;


Sign in / Sign up

Export Citation Format

Share Document