scholarly journals Determination of spatially differentiated water balance components including groundwater recharge on the Federal State level – A case study using the mGROWA model in North Rhine-Westphalia (Germany)

2015 ◽  
Vol 4 ◽  
pp. 294-312 ◽  
Author(s):  
Frank Herrmann ◽  
Luise Keller ◽  
Ralf Kunkel ◽  
Harry Vereecken ◽  
Frank Wendland
Author(s):  
Esayas Meresa ◽  
Abbadi Girmay ◽  
Amare Gebremedhin

This study aims to estimate long-term average annual and seasonal water balance components for Birki watershed using WetSpass model with the integrated geospatial modeling approach with ten years’ hydro-meteorological and biophysical data of the watershed. Both primary and secondary data were collected using both field survey and disk-based data collection methods. The WetSpass model was used for data analysis purposes. The finding showed that in the summer season the annual groundwater recharge is 24.1 mm year-1 (96.5%), winter season mean groundwater recharge is 0.8 mm year-1 (3.5%) and yearly mean groundwater recharge is 24.9 mm year-1, Surface runoff yearly mean value is 40.6 mm year-1, Soil evaporation yearly mean value is 10.8 mm year-1, Evapotranspiration yearly mean value is 60.8 mm year-1, Intersection loss yearly mean value is 17 mm year-1, and Transpiration loss yearly value is 6.8 mm year-1 in the entire watershed. The mean annual precipitation, which is 573 mm, is contributed to 7.4%, 7.1% and 85.5% recharge to the groundwater, to surface runoff, and evapotranspiration, respectively. Annually 1.1205 million m3 water recharges into the groundwater table as recharge from the precipitation on the entire watershed. The contribution of this study could be used as baseline information for regional water resource experts, policy makers and researchers for further investigation. It can also be concluded that integrated WetSpass and GIS-based models are good indicators for estimating and understanding of water balance components in a given watershed to implement an integrated watershed management plan for sustainable utilization and sustainable development.


2021 ◽  
Vol 56 (4) ◽  
pp. 613-618
Author(s):  
Vera Amelia ◽  
Soaloon Sinaga ◽  
Andy Bhermana

The existence of water as a crop growth requirement is a prerequisite in tropical drylands. In addition, water balance, as an important part of climate change, is needed to be accessed under certain conditions. This study aimed to observe water availability and analyze water balance at drylands for farming planning purposes. The results of this study were then required to determine planting patterns and farming planning in the tropics, in which information related to hydrology is still lack. The Thornthwaite-Mather method approach was used in this study to analyze water balance in areas observed and. Because of its simplicity, this method can also be applied to areas with limited data. The water balance analysis that provides the information on water availability can be used as basic consideration for farming planning, especially at drylands in which water availability is a critical factor for farming activities. In tropical drylands, the cropping pattern of food crops – secondary crops – fallow – horticulture crops can be proposed within farming planning. Maize as a food crop can be planted for the early planting period in January, in which it can be harvested at the age of 80 days around March. In the following month, secondary crops such as soybeans can be planted and harvested at 135 days. Fallow periods during August and September, the lands cannot be optimally used because of water deficit. Entering the beginning of October, the land can be cultivated and prepared for the next crop, eggplant, as horticultural crops, harvested at 135 days in early February.


2018 ◽  
Vol 9 (17) ◽  
pp. 168-181
Author(s):  
narges javidan ◽  
Abdolgreza Bahremand ◽  
rana javidan ◽  
Majid Onagh ◽  
Chooghi Bayram Komaki ◽  
...  

Hydrology ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 178
Author(s):  
Muhammad Aslam ◽  
Ali Salem ◽  
Vijay P. Singh ◽  
Muhammad Arshad

Evaluation of the spatial and temporal distribution of water balance components is required for efficient and sustainable management of groundwater resources, especially in semi-arid and data-poor areas. The Khadir canal sub-division, Chaj Doab, Pakistan, is a semi-arid area which has shallow aquifers which are being pumped by a plethora of wells with no effective monitoring. This study employed a monthly water balance model (water and energy transfer among soil, plants, and atmosphere)—WetSpass-M—to determine the groundwater balance components on annual, seasonal, and monthly time scales for a period of the last 20 years (2000–2019) in the Khadir canal sub-division. The spatial distribution of water balance components depends on soil texture, land use, groundwater level, slope, and meteorological conditions. Inputs for the model included data on topography, slope, soil, groundwater depth, slope, land use, and meteorological data (e.g., precipitation, air temperature, potential evapotranspiration, and wind speed) which were prepared using ArcGIS. The long-term average annual rainfall (455.7 mm) is distributed as 231 mm (51%) evapotranspiration, 109.1 mm (24%) surface runoff, and 115.6 mm (25%) groundwater recharge. About 51% of groundwater recharge occurs in summer, 18% in autumn, 14% in winter, and 17% in spring. Results showed that the WetSpass-M model properly simulated the water balance components of the Khadir canal sub-division. The WetSpass-M model’s findings can be used to develop a regional groundwater model for simulation of different aquifer management scenarios in the Khadir area, Pakistan.


2020 ◽  
Author(s):  
Rogier Westerhoff ◽  
Frederika Mourot ◽  
Conny Tschritter

<p>Global hydrological models often ingest remotely-sensed observations supported by ground-truthed data in attempts to better quantify water balance components, e.g. soil water content, evapotranspiration, runoff/discharge, groundwater recharge. However, the scaling up process from local observations to that global, coarse, scale contains large uncertainty, often undermining the relevance of water balance calculations.</p><p>With recent more advanced high-resolution satellite data, freely available at 10m spatial resolution and (sub-) weekly temporal resolution, there is a possibility to reduce uncertainty in that upscaling. However, there are two challenges in doing so when working with global models: exponential increase of computational effort, and the need for quantifying the yet unknown uncertainty of assumptions that coarse global model cells and their underlying equations bring.</p><p>This study hypothesises that a bottom-up approach with high-resolution satellite data and in situ observations will better constrain and quantify uncertainty. By using these more spatially-explicit data, we make the case that the estimation of water balance components should become more data-driven. We propose a more data-driven model that improves uncertainty of estimation and scalability by using more sophisticated, remotely-sensed interpolation layers.</p><p>Our case study shows New Zealand-wide estimates of evapotranspiration and groundwater recharge at two resolutions: 1km x 1km, using an earlier developed model and MODIS satellite data; and a novel approach at 10m x 10m using Sentinel-1 and Sentinel-2 data to better incorporate impervious areas (e.g., anthropogenic urbanised land covers) and small land patches (e.g., small forestry areas). We then study the implications of using different spatial scales and quantify the differences between 10m x 10m versus 1km x 1km model pixel estimates. Our method is applied in the Google Earth Engine, a free-for-research high performance cloud computing facility, hence providing powerful computational resources and making our approach easily scalable to global, regional and catchment scales. </p><p>Finally, we discuss what underlying model assumptions in traditional models could be changed to facilitate a method that works consistently at these different scales.</p>


2020 ◽  
Author(s):  
Katrin Schneider ◽  
Ralf Kiese

<p>It is generally accepted that climate change likely alters the ratio of water balance components in mid-latitude environments. Higher temperatures and an elevated water vapour deficit may increase evapotranspiration rates and reduce groundwater recharge rates. At the same time, agricultural management may interfere these effects, e.g. through reduced plant transpiration rates due to a high cutting frequency.</p><p>The study analyses climate change and agricultural management effects on the water fluxes and coupled nitrogen export in a prealpine grassland. It makes use of the grassland lysimeters, which are part of the TERENO preAlpine observatory in southern Bavaria (Germany). In a “space-for-time” approach, soil cores with an area of 1 m² and a depth of 1.5 m have been excavated and translocated to lower elevations. Furthermore, soil cores from the same area (that have not been translocated to lower elevations) act as control plots in the lysimeter network. The elevation gradient between the highest (864 m a.s.l.) and lowest (695 m a.s.l.) lysimeter station accounts for a temperature increase of approx. 2°C, while precipitation decreases from approx. 1350 mm a<sup>-1</sup> to approx. 960 mm a<sup>-1</sup>. Following local agricultural practice, intensive as well as extensive grassland management is applied at the lysimeters: intensive management refers to a higher frequency of cutting (up to five times per year) and manure application (approx.. 250 kg N ha<sup>-1</sup> a<sup>-1</sup>) than extensive management (two cuts and approx. 80 kg N ha<sup>-1</sup> a<sup>-1</sup>).</p><p>The study compares the effects of temperature and precipitation changes (i.e. elevated temperature and decrease in precipitation) and different agricultural management on water balance components (evapotranspiration, groundwater recharge, Ammonia and Nitrate fluxes) measured at the lysimeters. Preliminary result show that the ratio of evapotranspiration to precipitation increases in the climate change treatment. Water-bound nitrogen fluxes are comparably low on all sites, indicating that nitrogen uptake by plant plants is dominating over nitrogen leaching.</p>


Sign in / Sign up

Export Citation Format

Share Document