scholarly journals INTEGRAL PROPERTIES FOR VOCOIDAL THEORY AND APPLICATIONS

1982 ◽  
Vol 1 (18) ◽  
pp. 56
Author(s):  
G.P. Bleach

A comparison is made between two reference frames that can each be used to define "still water" for finite amplitude waves on water of finite depth. The reference frame characterized by zero mass flux due to the waves is used to find some exact relations between the wave integral properties. The averaged Lagranian (wave action) approach and the energy/momentum approach to the interaction of finite amplitude waves with slowly-varying currents are also derived in this reference frame. Results in many cases are simpler than those in the more commonly chosen reference frame characterized by zero mean horizontal velocity under the waves. An application of the integral properties is made to Vocoidal wave theory, which is defined in the zero mass flux frame. It is shown that the rotation present in the orbital velocity field of Vocoidal waves is not always negligible.

A number of exact relations are proved for periodic water waves of finite amplitude in water of uniform depth. Thus in deep water the mean fluxes of mass, momentum and energy are shown to be equal to 2T(4T—3F) and (3T—2V) crespectively, where T and V denote the kinetic and potential energies and c is the phase velocity. Some parametric properties of the solitary wave are here generalized, and some particularly simple relations are proved for variations of the Lagrangian The integral properties of the wave are related to the constants Q, R and S which occur in cnoidal wave theory. The speed, momentum and energy of deep-water waves are calculated numerically by a method employing a new expansion parameter. With the aid of Padé approximants, convergence is obtained for waves having amplitudes up to and including the highest. For the highest wave, the computed speed and amplitude are in agreement with independent calculations by Yamada and Schwartz. At the same time the computations suggest that the speed and energy, for waves of a given length, are greatest when the height is less than the maximum. In this respect the present results tend to confirm previous computations on solitary waves.


1990 ◽  
Vol 216 ◽  
pp. 505-536 ◽  
Author(s):  
G. P. Thomas

The interaction between a regular wavetrain and a current possessing an arbitrary distribution of vorticity, in two dimensions, is considered for waves of finite amplitude. A numerical model is constructed, primarily for use in the finite depth regime, extending the work of Dalrymple (1973, 1977) and this is used to predict the wavelength and the particle velocities under the waves. These predictions agree very well with experimentally obtained data and the importance of the vorticity in the wave–current interaction is clarified. Amplitude and wavelength modulations are considered for finite amplitude waves on a slowly varying irrotational current; moderate agreement is found between theory and experiment.


1964 ◽  
Vol 1 (9) ◽  
pp. 1
Author(s):  
Frank D. Masch

The propagation of long waves of finite amplitude in water with depth to wavelength ratios less than about one-tenth and greater than about one-fiftieth can be described by cnoidal wave theory. To date little use has been made of the theory because of the difficulties involved in practical application. This paper presents the theory necessary for predicting the transforming characteristics of long waves based on cnoidal theory. Basically the method involves calculating the power transmission for a wave train m shallow water from cnoidal theory and equating this to the deep water power transmission assuming no reflections or loss of energy as the waves move into shoaling water. The equations for wave power have been programmed for the range of cnoidal waves, and the results are plotted in non-dimensional form.


This paper examines the existence and properties of steady finite-amplitude waves of cats-eye form superposed on a unidirectional inviscid, incompressible shear flow. The problem is formulated as the solution of nonlinear Poisson equations for the stream function with boundary conditions on the unknown edges of the cats-eyes. The dependence of vorticity on stream function is assumed outside the cats-eyes to be as in the undisturbed flow, and uniform unknown vorticity is assumed inside. It is argued on the basis of a finite difference discretization that the problem is determinate, and numerical solutions are obtained for Couette-Poiseuille channel flow. These are compared with the predictions of a weakly nonlinear theory based on the approach of Benney & Bergeron (1969) and Davis (1969). The phase speed of the waves is found to be linear in the wave amplitude.


1996 ◽  
Vol 308 ◽  
pp. 147-170 ◽  
Author(s):  
T.-S. Yang ◽  
T. R. Akylas

The flow of a continuously stratified fluid over a smooth bottom bump in a channel of finite depth is considered. In the weakly nonlinear-weakly dispersive régime ε = a/h [Lt ] 1, μ = h/l [Lt ] 1 (where h is the channel depth and a, l are the peak amplitude and the width of the obstacle respectively), the parameter A = ε/μp (where p < 0 depends on the obstacle shape) controls the effect of nonlinearity on the steady lee wavetrain that forms downstream of the obstacle for subcritical flow speeds. For A = O(1), when nonlinear and dispersive effects are equally important, the interaction of the long-wave disturbance over the obstacle with the lee wave is fully nonlinear, and techniques of asymptotics ‘beyond all orders’ are used to determine the (exponentially small as μ → 0) lee-wave amplitude. Comparison with numerical results indicates that the asymptotic theory often remains reasonably accurate even for moderately small values of μ and ε, in which case the (formally exponentially small) lee-wave amplitude is greatly enhanced by nonlinearity and can be quite substantial. Moreover, these findings reveal that the range of validity of the classical linear lee-wave theory (A [Lt ] 1) is rather limited.


2018 ◽  
Vol 15 (3) ◽  
pp. 229-236 ◽  
Author(s):  
Gennaro Ruggiero ◽  
Alessandro Iavarone ◽  
Tina Iachini

Objective: Deficits in egocentric (subject-to-object) and allocentric (object-to-object) spatial representations, with a mainly allocentric impairment, characterize the first stages of the Alzheimer's disease (AD). Methods: To identify early cognitive signs of AD conversion, some studies focused on amnestic-Mild Cognitive Impairment (aMCI) by reporting alterations in both reference frames, especially the allocentric ones. However, spatial environments in which we move need the cooperation of both reference frames. Such cooperating processes imply that we constantly switch from allocentric to egocentric frames and vice versa. This raises the question of whether alterations of switching abilities might also characterize an early cognitive marker of AD, potentially suitable to detect the conversion from aMCI to dementia. Here, we compared AD and aMCI patients with Normal Controls (NC) on the Ego-Allo- Switching spatial memory task. The task assessed the capacity to use switching (Ego-Allo, Allo-Ego) and non-switching (Ego-Ego, Allo-Allo) verbal judgments about relative distances between memorized stimuli. Results: The novel finding of this study is the neat impairment shown by aMCI and AD in switching from allocentric to egocentric reference frames. Interestingly, in aMCI when the first reference frame was egocentric, the allocentric deficit appeared attenuated. Conclusion: This led us to conclude that allocentric deficits are not always clinically detectable in aMCI since the impairments could be masked when the first reference frame was body-centred. Alongside, AD and aMCI also revealed allocentric deficits in the non-switching condition. These findings suggest that switching alterations would emerge from impairments in hippocampal and posteromedial areas and from concurrent dysregulations in the locus coeruleus-noradrenaline system or pre-frontal cortex.


Author(s):  
Steven M. Weisberg ◽  
Anjan Chatterjee

Abstract Background Reference frames ground spatial communication by mapping ambiguous language (for example, navigation: “to the left”) to properties of the speaker (using a Relative reference frame: “to my left”) or the world (Absolute reference frame: “to the north”). People’s preferences for reference frame vary depending on factors like their culture, the specific task in which they are engaged, and differences among individuals. Although most people are proficient with both reference frames, it is unknown whether preference for reference frames is stable within people or varies based on the specific spatial domain. These alternatives are difficult to adjudicate because navigation is one of few spatial domains that can be naturally solved using multiple reference frames. That is, while spatial navigation directions can be specified using Absolute or Relative reference frames (“go north” vs “go left”), other spatial domains predominantly use Relative reference frames. Here, we used two domains to test the stability of reference frame preference: one based on navigating a four-way intersection; and the other based on the sport of ultimate frisbee. We recruited 58 ultimate frisbee players to complete an online experiment. We measured reaction time and accuracy while participants solved spatial problems in each domain using verbal prompts containing either Relative or Absolute reference frames. Details of the task in both domains were kept as similar as possible while remaining ecologically plausible so that reference frame preference could emerge. Results We pre-registered a prediction that participants would be faster using their preferred reference frame type and that this advantage would correlate across domains; we did not find such a correlation. Instead, the data reveal that people use distinct reference frames in each domain. Conclusion This experiment reveals that spatial reference frame types are not stable and may be differentially suited to specific domains. This finding has broad implications for communicating spatial information by offering an important consideration for how spatial reference frames are used in communication: task constraints may affect reference frame choice as much as individual factors or culture.


2017 ◽  
Vol 65 (2) ◽  
pp. 155-162 ◽  
Author(s):  
A. Rauf ◽  
S. A. Shehzad ◽  
T. Hayat ◽  
M. A. Meraj ◽  
A. Alsaedi

AbstractIn this article the stagnation point flow of electrically conducting micro nanofluid towards a shrinking sheet, considering a chemical reaction of first order is investigated. Involvement of magnetic field occurs in the momentum equation, whereas the energy and concentrations equations incorporated the influence of thermophoresis and Brownian motion. Convective boundary condition on temperature and zero mass flux condition on concentration are implemented. Partial differential equations are converted into the ordinary ones using suitable variables. The numerical technique is utilized to discuss the results for velocity, microrotation, temperature, and concentration fields.


Sign in / Sign up

Export Citation Format

Share Document