scholarly journals Optimization of Electrical Discharge Machining Process Parameters using SCM420 low alloy steel by Response Surface Methodology

2017 ◽  
Vol 14 (01) ◽  
pp. 75-79 ◽  
Author(s):  
K.S Morankar ◽  
R.D. Shelke
2016 ◽  
Vol 23 (2) ◽  
pp. 145-154
Author(s):  
V. Balasubramaniam ◽  
N. Baskar ◽  
Chinnaiyan Sathiya Narayanan

AbstractThis work presents the multiobjective optimization of machining parameters during the electrical discharge machining (EDM) of aluminum (Al)-silicon carbide (SiC) metal matrix composites (MMC). The process parameters considered were current, pulse on-time, dielectric flushing pressure, and SiC particles. A copper rod was used as an electrode. An Al-SiC MMC with Al 6061 as matrix and SiC particles having three different sizes (i.e., 15, 25, and 40 μm) were used as workpieces. The experiments were planned using design of experiments through response surface methodology (RSM). The mathematical models were developed to predict the better performance measures such as the material removal rate (MRR), electrode wear rate (EWR), surface roughness (SR), and cylindricity (CY). The desirability approach in RSM was performed for optimization. It was found that the MRR increases with increasing peak current, pulse on-time, flushing pressure, and particle size. The EDM parameters are to be analyzed for the MRR, EWR, SR, and CY. The best one is proposed for validation.


2016 ◽  
Vol 854 ◽  
pp. 93-100 ◽  
Author(s):  
B. Sivaraman ◽  
Senthil Padmavathy ◽  
P. Jothiprakash ◽  
T. Keerthivasan

This Aim of this paper is to analyse the effect of machining parameters of wire electrical discharge machining (WEDM) on workpiece material titanium, that were now widely used in many applications because of its technical benefits. Conventional method of machining the material will make the work piece to crack or flaws due to chipping, presence of burrs and cracking. Wire cut Electrical discharge machining techniques have been already tried with some other high strength materials which is complicated to cut. To prove the feasibility of machining the titanium, many experiments were carried out based on RSM. Hence by the head wire electrical discharge machining process is to be used to machining the work piece material (titanium) and the effect of various control parameters on the response parameters were analysed and optimized and the optimal combination of control parameters were found to get higher metal removal rate and surface finish using Response Surface Methodology.


Author(s):  
TS Senthilkumar ◽  
R Muralikannan ◽  
T Ramkumar ◽  
S Senthil Kumar

A substantially developed machining process, namely wire electrical discharge machining (WEDM), is used to machine complex shapes with high accuracy. This existent work investigates the optimization of the process parameters of wire electrical discharge machining, such as pulse on time ( Ton), peak current ( I), and gap voltage ( V), to analyze the output performance, such as kerf width and surface roughness, of AA 4032–TiC metal matrix composite using response surface methodology. The metal matrix composite was developed by handling the stir casting system. Response surface methodology is implemented through the Box–Behnken design to reduce experiments and design a mathematical model for the responses. The Box–Behnken design was conducted at a confident level of 99.5%, and a mathematical model was established for the responses, especially kerf width and surface roughness. Analysis of variance table was demarcated to check the cogency of the established model and determine the significant process. Surface roughness attains a maximum value at a high peak current value because high thermal energy was released, leading to poor surface finish. A validation test was directed between the predicted value and the actual value; however, the deviation is insignificant. Moreover, a confirmation test was handled for predicted and experimental values, and a minimal error was 2.3% and 2.12% for kerf width and surface roughness, respectively. Furthermore, the size of the crater, globules, microvoids, and microcracks were increased by amplifying the pulse on time.


Sign in / Sign up

Export Citation Format

Share Document