scholarly journals Effect of Pressure Angle on Bending Stress and Deformation of Asymmetric Spur Gear Using FEA

2012 ◽  
Vol 02 (04) ◽  
pp. 616-620
Author(s):  
MR. K. D. DADHANIYA
2012 ◽  
Vol 3 (6) ◽  
pp. 1-5
Author(s):  
Sachindra Kumar ◽  
◽  
Anjani Kumar Singh ◽  
Nitesh Kumar ◽  
Sushil Patel ◽  
...  

2018 ◽  
Vol 24 (5) ◽  
pp. 14
Author(s):  
Mohammad Qasim Abdullah ◽  
Mohammed Abdulaal Kadum

This study investigates the influence of asymmetric involute teeth profiles for helical gears on the bending stress. Theoretically, bending stress has been estimated in spur involute gears which have symmetric teeth profile by based on the Lewis, 1892 equation. Later, this equation is developed by, Abdullah, 2012. to determine the effect of an asymmetric tooth profile for the spur gear on the bending stress. And then these equations are applied with stress concentration factor once for symmetric and once other for asymmetric teeth profile. In this paper, the bending stresses for various types of helical gear with various types of asymmetric teeth profile are calculated numerically for defined the stress concentration factor. The numerical solution based on the finite element method technique which that done by using the software simulation SolidWorks 2016. The results of this study indicate that the helical gear drive with asymmetric teeth profile having 'loaded side pressure angle' of ( ) and 'unloaded side pressure angle' of ( ) is better than a helical gear with standard teeth profile having pressure angle of ( ) from the regarding of tooth bending strength. Also, notes that the great enhancement in the results of maximum tooth bending stress for modified involute of tooth profile compared with the standard teeth profile. In addition to, predict the equation of stress concentration factor which is a function of both unloaded side pressure angle and helix angle and then it used with Abdullah equation for to determine the nominal stresses in the root fillet.  


Author(s):  
R. Thirumurugan ◽  
C.C.C. Deepak ◽  
K. Karthieeban

This paper describes methodology for predicting the bending stress of the spur gear accurately by including the load on the adjacent teeth for high contact ratio asymmetric spur gear drive. Higher contact ratio is obtained by enlarging the addendum from the standard addendum value where as the asymmetric is achieved by keeping various pressure angles (170, 200 and 220) at non drive side while the drive side pressure angle was kept as 200. The bending stress developed for the given load according to the load sharing calculated by using stiffness based method along with the effect of adjacent teeth loads are explored in this work. Computer aided design tool is used for generating the gear tooth profile and ANSYS is used to carry out the finite element analysis. The result shows that the maximum bending stress level in a mesh cycle is increased when the load on adjacent teeth are taken into account. The higher pressure angle at the non-drive side yields lesser stress at the fillet region when compared to the lower pressure angle.


2013 ◽  
Vol 544 ◽  
pp. 497-501
Author(s):  
Chao Zhang ◽  
Jia Ning He ◽  
Yong Gao ◽  
Xu Lei Deng

Study on minimum teeth without undercutting for considering the rack cutter’s addendum c*m of a kind of gear with 14.5 degree pressure angle, and the gear standard No is B436-1940 and used in UK. Based on the generating method, reasons for undercut phenomena is analyzed, and the numbers of minimum teeth without undercutting of the involute spur gear, involute helical cylindrical gear and involute spur bevel gear are theoretically analyzed and figured out. The correct number of minimum teeth without undercutting of gear with 14.5 degree pressure angle is given, and also illustrated the validity of theoretical derivation.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Changbin Dong ◽  
Yongping Liu ◽  
Yongqiao Wei ◽  
Beibei Yun ◽  
Dawei Li ◽  
...  

As an important parameter to distinguish noncircular gear from cylindrical gear, eccentricity is very important for the meshing characteristics and transmission error of noncircular gear. In order to study the transmission characteristics of the elliptic gear, a pair of elliptic gear in the reversing device of a new type of drum pumping was taken as the research object. Based on the analysis of the transmission pressure angle and instantaneous contact ratio of the elliptic gear, the eccentricity error was introduced into the analysis model of transmission error. The influences of the eccentricity on the transmission pressure angle, instantaneous contact ratio, and transmission error were analyzed, and the analysis accuracy is verified by the finite element method. The results show that the eccentricity has a great influence on the transmission pressure angle, instantaneous contact ratio, and transmission error of the elliptic gear, and the eccentricity error has a significant influence on the transmission error. In order to ensure the normal meshing condition of the elliptic gear, the eccentricity should be less than 0.7071, and the maximum instantaneous contact ratio is 1.809. The research results can provide some guidance for the following noncircular spur gear transmission test and transmission error research.


2018 ◽  
Vol 237 ◽  
pp. 03010 ◽  
Author(s):  
Priyakant Vaghela ◽  
Jagdish Prajapati

This research describes simple and innovative approach to reduce bending stress at tooth root of asymmetric spur gear tooth which is desire for improve high load carrying capacity. In gear design at root of tooth circular-filleted is widely used. Blending of the involute profile of tooth and circular fillet creates discontinuity at root of tooth causes stress concentration occurs. In order to minimize stress concentration, geometric continuity of order 2 at the blending of gear tooth plays very important role. Bezier curve is used with geometric continuity of order 2 at tooth root of asymmetric spur gear to reduce bending stress.


2018 ◽  
Vol 15 (4) ◽  
pp. 478-488
Author(s):  
Prashant Jaysing Patil ◽  
Maharudra Patil ◽  
Krishnakumar Joshi

Purpose The aim of this paper is to study the effect of pressure angle and helix angle on bending stress at the root of helical gear tooth under dynamic state. Gear design is a highly complex process. The consistent demand to build low-cost, quieter and efficient machinery has resulted in a gradual change in gear design. Gear parameters such as pressure angle, helix angle, etc. affect the load-carrying capacity of gear teeth. Adequate load-carrying capacity of a gear is a prime requirement. The failure at the critical section because of bending stress is an unavoidable phenomenon. Besides this fact, the extent of these failures can be reduced by a proper gear design. The stresses produced under dynamic loading conditions in machine member differ considerably from those produced under static loading. Design/methodology/approach The present work is intended to study the effect of pressure angle and helix angle on the bending stress at the root of helical gear tooth under dynamic state. The photostress method has been used as experimental methods. Theoretical analysis was carried out by velocity factor method and Spott’s equation. LS DYNA has been used for finite element (FE) analysis. Findings The results show that experimental method gives a bending stress value that is closer to the true value, and bending stress varies with pressure angle and helix angle. The photostress technique gives clear knowledge of stress pattern at root of tooth. Originality/value The outcomes of this work help the designer use optimum weight-to-torque ratio of gear; this is ultimately going to reduce the total bulk of the gear box.


Sign in / Sign up

Export Citation Format

Share Document