Investigating the effect of helix angle and pressure angle on bending stress in helical gear under dynamic state

2018 ◽  
Vol 15 (4) ◽  
pp. 478-488
Author(s):  
Prashant Jaysing Patil ◽  
Maharudra Patil ◽  
Krishnakumar Joshi

Purpose The aim of this paper is to study the effect of pressure angle and helix angle on bending stress at the root of helical gear tooth under dynamic state. Gear design is a highly complex process. The consistent demand to build low-cost, quieter and efficient machinery has resulted in a gradual change in gear design. Gear parameters such as pressure angle, helix angle, etc. affect the load-carrying capacity of gear teeth. Adequate load-carrying capacity of a gear is a prime requirement. The failure at the critical section because of bending stress is an unavoidable phenomenon. Besides this fact, the extent of these failures can be reduced by a proper gear design. The stresses produced under dynamic loading conditions in machine member differ considerably from those produced under static loading. Design/methodology/approach The present work is intended to study the effect of pressure angle and helix angle on the bending stress at the root of helical gear tooth under dynamic state. The photostress method has been used as experimental methods. Theoretical analysis was carried out by velocity factor method and Spott’s equation. LS DYNA has been used for finite element (FE) analysis. Findings The results show that experimental method gives a bending stress value that is closer to the true value, and bending stress varies with pressure angle and helix angle. The photostress technique gives clear knowledge of stress pattern at root of tooth. Originality/value The outcomes of this work help the designer use optimum weight-to-torque ratio of gear; this is ultimately going to reduce the total bulk of the gear box.

2015 ◽  
Vol 766-767 ◽  
pp. 1070-1075 ◽  
Author(s):  
R. Devaraj

The main factors that cause the failure of gears are the bending stress and contact stress of the gear tooth. Out of these, failure of gears due to contact stress is high compared to bending stress. Stress analysis has been a key area of research to minimize failure and optimize design. This paper gives a finite element model for introspection of the stresses in the tooth during the meshing of gears. Specifically, helix angle is important for helical gears. Using modeling software, 3-D models for different helix angles in helical gears were generated, and the simulation was performed using ANSYS 12.0 to estimate the contact stress. The Hertz equation and AGMA standard was used to calculate the contact stress. The results of the theoretical contact stress values, using Hertz and AGMA are compared with the stress values from the FEA for different helix angles and the results are tabulated and discussed.


Author(s):  
Chienann A. Hou ◽  
Shijun Ma

Abstract The allowable bending stress Se of a gear tooth is one of the basic factors in gear design. It can be determined by either the pulsating test or the gear-running test. However, some differences exist between the allowable bending stress Se obtained from these different test methods. In this paper, the probability distribution functions corresponding to each test method are analyzed and the expressions for the minimum extreme value distribution are presented. By using numerical integration, Se values from the population of the same tested gear tooth are obtained. Based on this investigation it is shown that the differences in Se obtained from the different test methods are significant. A proposed correction factor associated with the different experimental approaches is also presented.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Binbin Su ◽  
Xianghe Zou ◽  
Lirong Huang

Purpose This paper aims to investigate the squeeze film lubrication properties of hexagonal patterned surface inspired by the epidermis structure of tree frog’s toe pad and numerically explore the working mechanism of hexagonal micropillar during the acquisition process of high adhesive and friction for wet contacts. Design/methodology/approach A two-dimensional elastohydrodynamic numerical model is employed for the squeezing contacts. The pressure distribution, load carrying capacity and liquid flow rate of the squeeze film are obtained through a simultaneous solution of the two-dimensional Reynolds equation and elasticity deformation equations. Findings Higher pressure is found to be longitudinally distributed across individual hexagonal pillar, with pressure peak emerging at the center of hexagonal pillar. Expanding the area density and shrinking the channel depth or initial film thickness will improve the magnitude of squeezing pressure. Relatively lower pressure is generated inside interconnected channels, which reduces the load carrying capacity of the squeeze film. Meanwhile, the introduction of microchannel is revealed to downscale the total mass flow rate of squeezing contacts. Originality/value This paper provides a good proof for the working mechanism of surface microstructures during the acquisition process of high adhesive and friction for wet contacts.


2017 ◽  
Vol 69 (4) ◽  
pp. 612-619 ◽  
Author(s):  
Christian Engelhardt ◽  
Jochen Witzig ◽  
Thomas Tobie ◽  
Karsten Stahl

Purpose Water can alter the performance of modern gear lubricants by influencing the flank load carrying capacity of gears significantly. The purpose of this paper is to investigate the influence of water contaminations in different kinds of base oils on the micro-pitting and wear performance of case carburized gears. Design/methodology/approach Concerning micro-pitting and wear, tests, based mostly on the following standardized tests, are performed on a Forschungsstelle fuer zahnraeder und getriebebau (FZG)-back-to-back gear test rig: micro-pitting short test Graufleckenkurztest (GFKT) according to DGMK 575 (screening test), micro-pitting test Graufleckentest (GT) according to FVA 54/7 (load stage test and endurance test) and Slow-speed wear test according to DGMK 377. To investigate the effect of water on the gear load carrying capacity dependent on different types of base oils, two polyglycol oils (PG1 and PG2), a polyalphaolefin oil, a mineral oil and an ester oil E are used. Each of these oils are common wind turbine gear oils with a viscosity ISO VG-220. Additionally, a manual transmission fluid with a viscosity of society of automotive engineers (SAE) 75W-85 is tested. Findings Considering the micro-pitting and wear performance, a significant decrease caused by water contaminations could not be detected. Regarding pitting damages, a generally negative influence was observed. This influence was differently distinctive for different base oil types. Especially non-polar lubricants seem to be affected negatively. The documented damages of the tooth flanks confirm this observation. While typical pitting damages appeared in test runs with polar lubricants, the disruption in test runs with non-polar lubricants was more extensive. Based on the experimental investigations, a general model of the damaging mechanisms of water contaminations in lubricants was derived. It is split into three partitions: interaction lubricant–water (effect of water on the molecular structure of base oils and additives), chemical-material-technological (especially corrosive reactions) and tribological influence (effect of water droplets in the contact zone). It has to be considered that the additive package of lubricants affects the influence of water contaminations on the flank load carrying capacity distinctively. An influence of water on the micro-pitting and wear performance in other than the given lubricants cannot be excluded. Originality/value While former research work was focused more on the effects of water in mineral oils, investigations concerning different types of base oils as well as different types of damages were carried out within this research project.


2017 ◽  
Vol 8 (1) ◽  
pp. 63-78 ◽  
Author(s):  
Rhys Jones ◽  
Neil Matthews ◽  
Daren Peng ◽  
Nicholas Orchowski

Purpose The purpose of this paper is to describe the results of a combined numerical and experimental study into the ability of supersonic particle deposition (SPD) to restore the load carrying capacity of rib stiffened wing planks with simulated stress corrosion cracking (SCC). Design/methodology/approach In this context the experimental results reveal that SCC can result in a dramatic reduction in the load carrying capacity of the structure and catastrophic failure via cracking that tears the length of the structure through buckling. A combined numerical and experimental study then reveals how this reduction, in the load carrying capacity can be overcome by using SPD. Findings This paper is the first to show that SPD can be used to restore the load carrying capacity of rib stiffened structures with SCC. It also shows that SPD repairs can be designed to have only a minimal effect on the local stiffness and hence on the load path. However, care should be taken to ensure that the design is such that premature failure of the SPD does not occur. Originality/value This is the first paper to show that a thin layer of SPD deposited 7,075 aluminium alloy powder on either side of the SCC-simulated stiffener has the potential to restore the load carrying capability of a rib stiffened structure. As such it represents an important first step into establishing the potential for SPD to restore the buckling strength of rib stiffened wing panels containing SCC.


2019 ◽  
Vol 71 (3) ◽  
pp. 406-410
Author(s):  
Fritz Klocke ◽  
Thomas Bergs ◽  
Christoph Löpenhaus ◽  
Philipp Scholzen ◽  
Tim Frech

Purpose The lower density of powder metallurgical (PM) gears compared to solid steel gears leads to not only a lower weight but also a lower load-carrying capacity. Therefore, PM gears are cold rolled before hardening to increase the density in the highly stressed surface zone and, thus, the flank load-carrying capacity. A further approach to increase the flank load-carrying capacity is the reduction of friction and wear in the tooth contact. The purpose of this paper is to analyze the hard rolling process as a new manufacturing step in the PM process chain to influence the boundary layer. Design/methodology/approach The investigation includes the new process of hard rolling, the variation of the cooling lubricant in the hard rolling process and the evaluation of its influence on the material properties and the flank load-carrying capacity. Therefore, the additives of the cooling lubricant are varied regarding the sulfur and phosphorous content. The load-carrying capacity is evaluated on disk-on-disk test rig and the material properties are evaluated by metallographic tests and boundary layer. Findings The results of the specimen characteristics in the micro and nano range show a significant influence of hard rolling on the residual stresses and the chemical surface composition. Because of hard rolling, residual compressive stresses as well as roughness are reduced and the flank load-carrying capacity is increased by high phosphorous content of the cooling lubricant. Originality/value This paper investigates a new manufacturing step to increase resource efficiency by increasing the flank load-carrying capacity of spur gears.


2019 ◽  
Vol 71 (3) ◽  
pp. 411-419 ◽  
Author(s):  
Fangrui Lv ◽  
Chunxiao Jiao ◽  
Donglin Zou ◽  
Na Ta ◽  
Zhu-shi Rao

Purpose The purpose of this paper is to analyze the lubrication behavior of misaligned water-lubricated polymer bearings with axial grooves. Design/methodology/approach A lubrication model considering journal misalignment, bush deformation and grooves is established. In dynamic analyses of shaft systems, bearings are usually simplified as supporting points. Thus, an approach for solving the equivalent supporting point location is presented. The influence of misalignment angle and groove number on film thickness, hydrodynamic pressure distribution, load-carrying capacity and ESP location is investigated. Findings As the misalignment angle increases, the location of the maximum pressure and ESP are shifted toward the down-warping end, and the load-carrying capacity of the bearing decreases. In comparison to the nine-groove bearing, the six grooves bearing has a higher load-carrying capacity and the ESP is located closer to the down-warping end for an equivalent misalignment angle. Practical implications The results of this study can be applied to marine propeller shaft systems and other systems with misaligned bearings. Originality/value A study on the lubrication behavior of misaligned water-lubricated polymer bearings with axial grooves is of significant interest to the research community.


2019 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Andreas Ziegltrum ◽  
Stefan Emrich ◽  
Thomas Lohner ◽  
Klaus Michaelis ◽  
Alexander Brodyanski ◽  
...  

Purpose This paper aims to address the influence of tribofilms and running-in on failures and friction of gears. The operation regime of gears is increasingly shifted to mixed and boundary lubrication, where high local pressures and temperatures occur at solid interactions in the gear contact. This results in strong tribofilm formation due to interactions of lubricant and its additives with the gear flanks and is related to changes of surface topography especially pronounced during running-in. Design/methodology/approach Experiments at a twin-disk and gear test rig were combined with chemical, structural and mechanical tribofilm characterization by surface analysis. Pitting lifetime, scuffing load carrying capacity and friction of ground spur gears were investigated for a mineral oil with different additives. Findings Experimental investigations showed a superordinate influence of tribofilms over surface roughness changes on damage and friction behavior of gears. Surface analysis of tribofilms provides explanatory approaches for friction behavior and load carrying capacity. A recommendation for the running-in of spur gears was derived. Originality/value Experimental methods and modern surface analysis were combined to study the influence of running-in and tribofilms on different failures and friction of spur gears.


2019 ◽  
Vol 71 (3) ◽  
pp. 357-365 ◽  
Author(s):  
Pentyala Srinivasa Rao ◽  
Amit Kumar Rahul

Purpose This paper aims to investigate the effect of surface roughness (radial and azimuthal) and viscosity variation on a squeeze film of a conical bearing with a non-Newtonian lubricant by using Rabinowitsch fluid model. Design/methodology/approach The main objective is to determine the stochastic nonlinear modified Reynolds equation for rough conical bearing. Later, first-order closed-form solutions are obtained using a small perturbation method and are numerically solved using the Gauss quadrature method. Findings The findings of this paper, numerical calculations, are analyzed for pressure, load carrying capacity and response time. The simulated results indicate that the influence of surface roughness increases the pressure, load carrying capacity and response time, whereas the viscosity variation factor decreases the pressure, load and response time. Originality/value According to both types of surface roughness with viscosity variation, the performance of a squeeze film rough conical bearing was improved by using Rabinowitsch fluid model. As it is inevitable to consider viscosity variation for bearing designer, it leads to a long life period of conical bearing.


Sign in / Sign up

Export Citation Format

Share Document