Characteristics of Daily Precipitation Data Based on the Detailed Climate Change Ensemble Scenario Depending on the Regional Climate Models and the Calibration

2015 ◽  
Vol 15 (4) ◽  
pp. 261-272
Author(s):  
Jungho Kim ◽  
Jingul Joo
2019 ◽  
Vol 58 (2) ◽  
pp. 269-289 ◽  
Author(s):  
Moosup Kim ◽  
Yoo-Bin Yhang ◽  
Chang-Mook Lim

AbstractThe daily precipitation data generated by dynamical models, including regional climate models, generally suffer from biases in distribution and spatial dependence. These are serious flaws if the data are intended to be applied to hydrometeorological studies. This paper proposes a scheme for correcting the biases in both aspects simultaneously. The proposed scheme consists of two steps: an aggregation step and a disaggregation step. The first one aims to obtain a smoothed precipitation pattern that must be retained in correcting the bias, and the second aims to make up for the deficient spatial variation of the smoothed pattern. In both steps, the Gaussian copula plays important roles since it not only provides a feasible way to correct the spatial correlation of model simulations but also can be extended for large-dimension cases by imposing a covariance function on its correlation structure. The proposed scheme is applied to the daily precipitation data generated by a regional climate model. We can verify that the biases are satisfactorily corrected by examining several statistics of the corrected data.


2021 ◽  
Author(s):  
James Ciarlo ◽  
Erika Coppola ◽  
Emanuela Pichelli ◽  
Jose Abraham Torres Alavez ◽  

<p>Downscaling data from General Circulation Models (GCMs) with Regional Climate Models (RCMs) is a computationally expensive process, even more so running at the convection permitting scale (CP). Despite the high-resolution products of these simulations, the Added Value (AV) of these runs compared to their driving models is an important factor for consideration. A new method was recently developed to quantify the AV of historical simulations as well as the Climate Change Downscaling Signal (CCDS) of forecast runs. This method presents these quantities spatially and thus the specific regions with the most AV can be identified and understood.</p><p>An analysis of daily precipitation from a 55-model EURO-CORDEX ensemble (at 12 km resolution) was assessed using this method. It revealed positive AV throughout the domain with greater emphasis in regions of complex topography, coast-lines, and the tropics. Similar CCDS was obtained when assessing the RCP 8.5 far future runs in these domains. This paper looks more closely at the CCDS obtained with this method and compares it to other climate change signals described in other studies.</p><p>The same method is now being applied to assess the AV and CCDS of daily precipitation from an ensemble of models at the CP scale (~3 km) over different domains within Europe. The current stage of the analysis is also looking into the AV of using hourly precipitation instead of daily.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Dongwoo Jang

Climate change scenarios are used for predicting future precipitation. More detailed regional climate change scenarios are being used through dynamic downscale based on global circulation model results. There is a global tendency to utilize simulated precipitation data from downscaled regional climate models (RCMs) suitable for each country. In Korea, there are studies for improving the accuracy of climate change scenario precipitation forecasts compared with observed precipitation. In this study, the precipitation of five regional climate models and actual observed precipitation provided in Korea are applied to ANN (artificial neural network), which suggests ways to improve prediction accuracy for precipitation. The ANN ensemble of RCMs simulates the actual observed precipitation more accurately than the individual RCM. In particular, it is more effective inland than in coastal areas, where precipitation patterns are complex. Pearson correlation coefficient of ANN is high as 0.04 compared with MRA. It is expected that more detailed analysis will be possible if it is applied not only to four cities but also to other regions in Korea. If observed precipitation data are collected in sufficient quantity, the applicability of the ANN model will widen.


2021 ◽  
Vol 11 (5) ◽  
pp. 2403
Author(s):  
Daniel Ziche ◽  
Winfried Riek ◽  
Alexander Russ ◽  
Rainer Hentschel ◽  
Jan Martin

To develop measures to reduce the vulnerability of forests to drought, it is necessary to estimate specific water balances in sites and to estimate their development with climate change scenarios. We quantified the water balance of seven forest monitoring sites in northeast Germany for the historical time period 1961–2019, and for climate change projections for the time period 2010–2100. We used the LWF-BROOK90 hydrological model forced with historical data, and bias-adjusted data from two models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) downscaled with regional climate models under the representative concentration pathways (RCPs) 2.6 and 8.5. Site-specific monitoring data were used to give a realistic model input and to calibrate and validate the model. The results revealed significant trends (evapotranspiration, dry days (actual/potential transpiration < 0.7)) toward drier conditions within the historical time period and demonstrate the extreme conditions of 2018 and 2019. Under RCP8.5, both models simulate an increase in evapotranspiration and dry days. The response of precipitation to climate change is ambiguous, with increasing precipitation with one model. Under RCP2.6, both models do not reveal an increase in drought in 2071–2100 compared to 1990–2019. The current temperature increase fits RCP8.5 simulations, suggesting that this scenario is more realistic than RCP2.6.


2018 ◽  
Vol 22 (1) ◽  
pp. 673-687 ◽  
Author(s):  
Antoine Colmet-Daage ◽  
Emilia Sanchez-Gomez ◽  
Sophie Ricci ◽  
Cécile Llovel ◽  
Valérie Borrell Estupina ◽  
...  

Abstract. The climate change impact on mean and extreme precipitation events in the northern Mediterranean region is assessed using high-resolution EuroCORDEX and MedCORDEX simulations. The focus is made on three regions, Lez and Aude located in France, and Muga located in northeastern Spain, and eight pairs of global and regional climate models are analyzed with respect to the SAFRAN product. First the model skills are evaluated in terms of bias for the precipitation annual cycle over historical period. Then future changes in extreme precipitation, under two emission scenarios, are estimated through the computation of past/future change coefficients of quantile-ranked model precipitation outputs. Over the 1981–2010 period, the cumulative precipitation is overestimated for most models over the mountainous regions and underestimated over the coastal regions in autumn and higher-order quantile. The ensemble mean and the spread for future period remain unchanged under RCP4.5 scenario and decrease under RCP8.5 scenario. Extreme precipitation events are intensified over the three catchments with a smaller ensemble spread under RCP8.5 revealing more evident changes, especially in the later part of the 21st century.


2021 ◽  
Author(s):  
Patrick Nistahl ◽  
Tim Müller ◽  
Gerhard Riedel ◽  
Hannes Müller-Thomy ◽  
Günter Meon

&lt;p&gt;Climate change impact studies performed for Northern Germany indicate a growing demand for water storage capacity to account for flood protection, low flow augmentation, drinking and agricultural water supply. At the same time, larger storage volumes for hydropower plants can be used to cope with the demands of changing energy supply from fossil to renewable energies. To tackle these challenges for the next decades, a novel reservoir system planning instrument is developed, which consists of combined numerical models and evaluation components. It allows to model simultaneously the current interconnected infrastructure of reservoirs as well as additional planning variants (structural and operational) as preparation for climate change. This planning instrument consists of a hydrological model and a detailed reservoir operation model.&lt;/p&gt;&lt;p&gt;As hydrological model, the conceptual, semi-distributed version of PANTA RHEI is applied. &amp;#160;Bias-corrected regional climate models (based on the RCP 8.5 scenario) are used as meteorological input. The hydrological model is coupled with a detailed reservoir operation model that replicates the complex rules of various interconnected reservoirs based on an hourly time step including pumped storage plants, which may have a subsurface reservoir as a lower basin. Downstream of the reservoirs, the hydrological model is used for routing the reservoir outflows and simulating natural side inflows. In areas of particular interest for flood protection, the hydrological routing is substituted with 2D hydraulic models to calculate the flood risk in terms of expected annual flood damage based on resulting inundation areas.&lt;/p&gt;&lt;p&gt;For the performance analysis, the simulation runs for all integrated modeling variants are evaluated for a reference period (1971-2000) and for future periods (2041-2070). Performance criteria involve flood protection, drinking water supply, low flow augmentation and energy production. These performance criteria will be used as stake holder information as well as a base for further optimization and ranking of the planning variants.&lt;/p&gt;&lt;p&gt;The combination of the hydrological model and the reservoir operation model shows a good performance of the existing complex hydraulic infrastructure using observed meteorological forcing as input. The usage of regional climate models as input shows a wide dispersion of several performance criteria, confirming the expected need for an innovative optimization scheme and the communication of the underlying uncertainties.&lt;/p&gt;


2013 ◽  
Vol 13 (2) ◽  
pp. 263-277 ◽  
Author(s):  
C. Dobler ◽  
G. Bürger ◽  
J. Stötter

Abstract. The objectives of the present investigation are (i) to study the effects of climate change on precipitation extremes and (ii) to assess the uncertainty in the climate projections. The investigation is performed on the Lech catchment, located in the Northern Limestone Alps. In order to estimate the uncertainty in the climate projections, two statistical downscaling models as well as a number of global and regional climate models were considered. The downscaling models applied are the Expanded Downscaling (XDS) technique and the Long Ashton Research Station Weather Generator (LARS-WG). The XDS model, which is driven by analyzed or simulated large-scale synoptic fields, has been calibrated using ECMWF-interim reanalysis data and local station data. LARS-WG is controlled through stochastic parameters representing local precipitation variability, which are calibrated from station data only. Changes in precipitation mean and variability as simulated by climate models were then used to perturb the parameters of LARS-WG in order to generate climate change scenarios. In our study we use climate simulations based on the A1B emission scenario. The results show that both downscaling models perform well in reproducing observed precipitation extremes. In general, the results demonstrate that the projections are highly variable. The choice of both the GCM and the downscaling method are found to be essential sources of uncertainty. For spring and autumn, a slight tendency toward an increase in the intensity of future precipitation extremes is obtained, as a number of simulations show statistically significant increases in the intensity of 90th and 99th percentiles of precipitation on wet days as well as the 5- and 20-yr return values.


2015 ◽  
Vol 7 (1) ◽  
pp. 16-28 ◽  
Author(s):  
Andrijana Todorovic ◽  
Jasna Plavsic

Assessment of climate change (CC) impact on hydrologic regime requires a calibrated rainfall-runoff model, defined by its structure and parameters. The parameter values depend, inter alia, on the calibration period. This paper investigates influence of the calibration period on parameter values, model efficiency and streamflow projections under CC. To this end, a conceptual HBV-light model of the Kolubara River catchment in Serbia is calibrated against flows observed within 5 consecutive wettest, driest, warmest and coldest years and in the complete record period. The optimised parameters reveal high sensitivity towards calibration period. Hydrologic projections under climate change are developed by employing (1) five hydrologic models with outputs of one GCM–RCM chain (Global and Regional Climate Models) and (2) one hydrologic model with five GCM–RCM outputs. Sign and magnitude of change in projected variables, compared to the corresponding values simulated over the baseline period, vary with the hydrologic model used. This variability is comparable in magnitude to variability stemming from climate models. Models calibrated over periods with similar precipitation as the projected ones may result in less uncertain projections, while warmer climate is not expected to contribute to the uncertainty in flow projections. Simulations over prolonged dry periods are expected to be uncertain.


2021 ◽  
Author(s):  
Antoine Doury ◽  
Samuel Somot ◽  
Sébastien Gadat ◽  
Aurélien Ribes ◽  
Lola Corre

Abstract Providing reliable information on climate change at local scale remains a challenge of first importance for impact studies and policymakers. Here, we propose a novel hybrid downscaling method combining the strengths of both empirical statistical downscaling methods and Regional Climate Models (RCMs). The aim of this tool is to enlarge the size of high-resolution RCM simulation ensembles at low cost.We build a statistical RCM-emulator by estimating the downscaling function included in the RCM. This framework allows us to learn the relationship between large-scale predictors and a local surface variable of interest over the RCM domain in present and future climate. Furthermore, the emulator relies on a neural network architecture, which grants computational efficiency. The RCM-emulator developed in this study is trained to produce daily maps of the near-surface temperature at the RCM resolution (12km). The emulator demonstrates an excellent ability to reproduce the complex spatial structure and daily variability simulated by the RCM and in particular the way the RCM refines locally the low-resolution climate patterns. Training in future climate appears to be a key feature of our emulator. Moreover, there is a huge computational benefit in running the emulator rather than the RCM, since training the emulator takes about 2 hours on GPU, and the prediction is nearly instantaneous. However, further work is needed to improve the way the RCM-emulator reproduces some of the temperature extremes, the intensity of climate change, and to extend the proposed methodology to different regions, GCMs, RCMs, and variables of interest.


Sign in / Sign up

Export Citation Format

Share Document