scholarly journals Numerical Simulation of Debris Flow Behavior at Mt. Umyeon using the DAN3D Model

2019 ◽  
Vol 19 (3) ◽  
pp. 195-202 ◽  
Author(s):  
Deuk-Hwan Lee ◽  
Seung-Rae Lee ◽  
Joon-Young Park
2019 ◽  
Vol 255 ◽  
pp. 26-36 ◽  
Author(s):  
Zheng Han ◽  
Bin Su ◽  
Yange Li ◽  
Wei Wang ◽  
Weidong Wang ◽  
...  

2015 ◽  
Vol 190 ◽  
pp. 52-64 ◽  
Author(s):  
Zheng Han ◽  
Guangqi Chen ◽  
Yange Li ◽  
Chuan Tang ◽  
Linrong Xu ◽  
...  

2021 ◽  
Vol 58 (1) ◽  
pp. 23-34
Author(s):  
Taro Uchida ◽  
Yuki Nishiguchi ◽  
Brian W. McArdell ◽  
Yoshifumi Satofuka

Physically based numerical simulation models have been developed to predict hazard area relating to debris flows. Since fine sediments are expected to behave as a part of the fluid rather than solid phase in stony debris flows, several models have recently included this process of the phase shift from solid to fluid in the context of fine sediment. However, models have not been fully tested regarding the ability to reproduce a variety of debris flow characteristics. We therefore tested (i) applicability of a numerical simulation model for describing debris flow characteristics and (ii) the effect of phase shift of fine sediment on debris flow behaviors. Herein we applied a numerical simulation model to a well-documented dataset from the Illgraben debris flow observation station in Switzerland. Based on the stony debris flow concept, we physically modeled effects of the phase shift of sediment on transport capacity and flow resistance. We successfully reproduced the observed bulk density, erosion and deposition patterns, front velocity, and erosion rate, although we had to tune the ratio of fine sediment that behaves as a fluid. Considering the effects of the phase shift of sediments, we conclude that physically based numerical simulation models can describe a variety of debris flow behaviors.


2003 ◽  
Vol 47 ◽  
pp. 583-588 ◽  
Author(s):  
Yoshifumi SATOFUKA ◽  
Tamotsu TAKAHASHI

2018 ◽  
Vol 169 ◽  
pp. 393-404 ◽  
Author(s):  
GuangChun Song ◽  
YuXing Li ◽  
WuChang Wang ◽  
Kai Jiang ◽  
Zhengzhuo Shi ◽  
...  

2010 ◽  
Vol 65 (4) ◽  
pp. 1462-1473 ◽  
Author(s):  
Lu Huilin ◽  
Wang Shuyan ◽  
Zheng Jianxiang ◽  
Dimitri Gidaspow ◽  
Jianmin Ding ◽  
...  

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 256
Author(s):  
Florian Brüning ◽  
Volker Schöppner

For plastic processing extruders with grooved feed sections, the design of the feed section by means of analytical calculation models can be useful to reduce experimental costs. However, these models include assumptions and simplifications that can significantly decrease the prediction accuracy of the throughput due to complex flow behavior. In this paper, the accuracy of analytical modeling for calculating the throughput in a grooved barrel extruder is verified based on a statistical design of experiments. A special focus is placed on the assumptions made in the analytics of a backpressure-independent throughput, the assumption of a block flow and the differentiation of the solids conveying into different conveying cases. Simulative throughput tests with numerical simulation software using the discrete element method, as well as experimental throughput tests, serve as a benchmark. Overall, the analytical modeling already shows a very good calculation accuracy. Nevertheless, there are some outliers that lead to larger deviations in the throughput. The model predominantly overestimates the throughputs, whereby the origin of these deviations is often in the conveying angle calculation. Therefore, a regression-based correction factor for calculating the conveying angle is developed and implemented.


Sign in / Sign up

Export Citation Format

Share Document