yeast deletion library
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Vol 19 (4) ◽  
pp. e39
Author(s):  
Sol Lee ◽  
Miyoung Nam ◽  
Ah-Reum Lee ◽  
Seung-Tae Baek ◽  
Min Jung Kim ◽  
...  

Tamoxifen (TAM) is an anticancer drug used to treat estrogen receptor (ER)‒positive breast cancer. However, its ER-independent cytotoxic and antifungal activities have prompted debates on its mechanism of action. To achieve a better understanding of the ER-independent antifungal action mechanisms of TAM, we systematically identified TAM-sensitive genes through microarray screening of the heterozygous gene deletion library in fission yeast (Schizosaccharomyces pombe). Secondary confirmation was followed by a spotting assay, finally yielding 13 TAM-sensitive genes under the drug-induced haploinsufficient condition. For these 13 TAM-sensitive genes, we conducted a comparative analysis of their Gene Ontology (GO) ‘biological process’ terms identified from other genome-wide screenings of the budding yeast deletion library and the MCF7breast cancer cell line. Several TAM-sensitive genes overlapped between the yeast strains and MCF7 in GO terms including ‘cell cycle’ (cdc2, rik1, pas1, and leo1), ‘signaling’ (sck2, oga1, and cki3), and ‘vesicle-mediated transport’ (SPCC126.08c, vps54, sec72, and tvp15), suggesting their roles in the ER-independent cytotoxic effects of TAM. We recently reported that the cki3 gene with the ‘signaling’ GO term was related to the ER-independent antifungal action mechanisms of TAM in yeast. In this study, we report that haploinsufficiency of the essential vps54 gene, which encodes the GARP complex subunit, significantly aggravated TAM sensitivity and led to an enlarged vesicle structure in comparison with the SP286 control strain. These results strongly suggest that the vesicle-mediated transport process might be another action mechanism of the ER-independent antifungal or cytotoxic effects of TAM.


2020 ◽  
Author(s):  
Maren Wehrs ◽  
Mitchell G. Thompson ◽  
Deepanwita Banerjee ◽  
Jan-Philip Prahl ◽  
Carolina A. Barcelos ◽  
...  

AbstractTo understand the genetic basis of changes in strain physiology during industrial fermentation, and the corresponding roles these genes play in strain performance, we employed a barcoded yeast deletion library to assess genome-wide strain fitness across a simulated industrial fermentation regime. Our results demonstrate the utility of Bar-seq to assess fermentation associated stresses in yeast populations under industrial conditions. We find that mutant population diversity is maintained through multiple seed trains, enabling for large scale fermentation selective pressures to act upon the community. We identify specific deletion mutants that were enriched in all processes, independent of the cultivation conditions, which include MCK1, RIM11, MRK1, and YGK3 that encode homologues of mammalian glycogen synthase kinase 3 (GSK-3). Further, we show that significant changes in the population diversity during fed-batch cultivations reflect the presence of significant external stresses, such as the accumulation of the fermentative byproduct ethanol. The mutants that were lost during the time of most extreme population selection suggest that specific biological processes may be required to cope with these specific stresses. Overall our work highlights a promising avenue to identify genetic loci and biological stress responses required for fitness under industrial conditions.


2006 ◽  
Vol 50 (2) ◽  
pp. 587-595 ◽  
Author(s):  
Mark C. Wagner ◽  
Elizabeth E. Molnar ◽  
Bruce A. Molitoris ◽  
Mark G. Goebl

ABSTRACT Gentamicin continues to be a primary antibiotic against gram-negative infections. Unfortunately, associated nephro- and ototoxicity limit its use. Our previous mammalian studies showed that gentamicin is trafficked to the endoplasmic reticulum in a retrograde manner and subsequently released into the cytosol. To better dissect the mechanism through which gentamicin induces toxicity, we have chosen to study its toxicity using the simple eukaryote Saccharomyces cerevisiae. A recent screen of the yeast deletion library identified multiple gentamicin-sensitive strains, many of which participate in intracellular trafficking. Our approach was to evaluate gentamicin sensitivity under logarithmic growth conditions. By quantifying growth inhibition in the presence of gentamicin, we determined that several of the sensitive strains were part of the Golgi-associated retrograde protein (GARP) and homotypic fusion and vacuole protein sorting (HOPS) complexes. Further evaluation of their other components showed that the deletion of any GARP member resulted in gentamicin-hypersensitive strains, while the deletion of other HOPS members resulted in less gentamicin sensitivity. Other genes whose deletion resulted in gentamicin hypersensitivity included ZUO1, SAC1, and NHX1. Finally, we utilized a Texas Red gentamicin conjugate to characterize gentamicin uptake and localization in both gentamicin-sensitive and -insensitive strains. These studies were consistent with our mammalian studies, suggesting that gentamicin toxicity in yeast results from alterations to intracellular trafficking pathways. The identification of genes whose absence results in gentamicin toxicity will help target specific pathways and mechanisms that contribute to gentamicin toxicity.


2005 ◽  
Vol 25 (24) ◽  
pp. 11171-11183 ◽  
Author(s):  
Soon-ja Kim ◽  
Mark J. Swanson ◽  
Hongfang Qiu ◽  
Chhabi K. Govind ◽  
Alan G. Hinnebusch

ABSTRACT The Cyc8p/Tup1p complex mediates repression of diverse genes in Saccharomyces cerevisiae and is recruited by DNA binding proteins specific for the different sets of repressed genes. By screening the yeast deletion library, we identified Cyc8p as a coactivator for Gcn4p, a transcriptional activator of amino acid biosynthetic genes. Deletion of CYC8 confers sensitivity to an inhibitor of isoleucine/valine biosynthesis and impairs activation of Gcn4p-dependent reporters and authentic amino acid biosynthetic target genes. Deletion of TUP1 produces similar but less severe activation defects in vivo. Although expression of Gcn4p is unaffected by deletion of CYC8, chromatin immunoprecipitation assays reveal a strong defect in binding of Gcn4p at the target genes ARG1 and ARG4 in cyc8Δ cells and to a lesser extent in tup1Δ cells. The defects in Gcn4p binding and transcriptional activation in cyc8Δ cells cannot be overcome by Gcn4p overexpression but are partially suppressed in tup1Δ cells. The impairment of Gcn4p binding in cyc8Δ and tup1Δ cells is severe enough to reduce recruitment of SAGA, Srb mediator, TATA binding protein, and RNA polymerase II to the ARG1 and ARG4 promoters, accounting for impaired transcriptional activation of these genes in both mutants. Cyc8p and Tup1p are recruited to the ARG1 and ARG4 promoters, consistent with a direct role for this complex in stimulating Gcn4p occupancy of the upstream activation sequence (UAS). Interestingly, Gcn4p also stimulates binding of Cyc8p/Tup1p at the 3′ ends of these genes, raising the possibility that Cyc8p/Tup1p influences transcription elongation. Our findings reveal a novel coactivator function for Cyc8p/Tup1p at the level of activator binding and suggest that Gcn4p may enhance its own binding to the UAS by recruiting Cyc8p/Tup1p.


2005 ◽  
Vol 388 (1) ◽  
pp. 93-101 ◽  
Author(s):  
Caryn E. OUTTEN ◽  
Robert L. FALK ◽  
Valeria C. CULOTTA

Prolonged exposure to hyperoxia represents a serious danger to cells, yet little is known about the specific cellular factors that affect hyperoxia stress. By screening the yeast deletion library, we have identified genes that protect against high-O2 damage. Out of approx. 4800 mutants, 84 were identified as hyperoxia-sensitive, representing genes with diverse cellular functions, including transcription and translation, vacuole function, NADPH production, and superoxide detoxification. Superoxide plays a significant role, since the majority of hyperoxia-sensitive mutants displayed cross-sensitivity to superoxide-generating agents, and mutants with compromised SOD (superoxide dismutase) activity were particularly vulnerable to hyperoxia. By comparison, factors known to guard against H2O2 toxicity were poorly represented amongst hyperoxia-sensitive mutants. Although many cellular components are potential targets, our studies indicate that mitochondrial glutathione is particularly vulnerable to hyperoxia damage. During hyperoxia stress, mitochondrial glutathione is more susceptible to oxidation than cytosolic glutathione. Furthermore, two factors that help maintain mitochondrial GSH in the reduced form, namely the NADH kinase Pos5p and the mitochondrial glutathione reductase (Glr1p), are critical for hyperoxia resistance, whereas their cytosolic counterparts are not. Our findings are consistent with a model in which hyperoxia toxicity is manifested by superoxide-related damage and changes in the mitochondrial redox state.


Sign in / Sign up

Export Citation Format

Share Document