scholarly journals Ion-selective Electrodes Based on PVC Membranes for Potentiometric Sensor Applications: A Review

Author(s):  
Mohan Chandra ◽  
Kumar Vinod

Ion-selective electrodes (ISEs) are potentiometric sensors used to measure some of the most critical analytes in environmental laboratory. Recently ion sensors are taking place of various analytical techniques, as they provide a convenient and fast method of electroanalysis. Ion-selective electrodes are simple, relatively inexpensive, robust, durable, and ideal to be used for the detection of heavy metal ions. Important characterisctics of ISEs are selectivity, response time, detection limit, working range, effect of pH etc. Lot of research work is being done for the formation of ISEs by using polymeric membrane incorporated with ionophores or electroactive material. Various types of Schiff bases, macromolecules and metal complexes may be used as ionophores along with plasticizer, ion-excluder for the membrane preparation. Ion-selective electrodes will be optimized for pH range, selectivity, sensitivity, working concentration range and lifetime before their use as sensor electrode for determining the concentration of ions in solution. Various researchers are working in the field to develop Ion-selective electrodes which shows better selectivity and sensitivity than the previously reported electrodes and can be used as electrocatalysts. These ISEs can be used as electrochemical sensors for the analysis of food products, drinking water, beverages, fertilizers, and for the analysis of sample containing toxic substances.

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5331
Author(s):  
Sandra Magina ◽  
Alisa Rudnitskaya ◽  
Sílvia Soreto ◽  
Luís Cadillon Costa ◽  
Ana Barros-Timmons ◽  
...  

In this study, lignosulfonate (LS) from the acid sulfite pulping of eucalypt wood was used to synthesize LS-based polyurethanes (PUs) doped with multiwalled carbon nanotubes (MWCNTs) within the range of 0.1–1.4% w/w, yielding a unique conducting copolymer composite, which was employed as a sensitive material for all-solid-state potentiometric chemical sensors. LS-based PUs doped with 1.0% w/w MWCNTs exhibited relevant electrical conductivity suitable for sensor applications. The LS-based potentiometric sensor displayed a near-Nernstian or super-Nernstian response to a wide range of transition metals, including Cu(II), Zn(II), Cd(II), Cr(III), Cr(VI), Hg(II), and Ag(I) at pH 7 and Cr(VI) at pH 2. It also exhibited a redox response to the Fe(II)/(III) redox pair at pH 2. Unlike other lignin-based potentiometric sensors in similar composite materials, this LS-based flexible polymeric membrane did not show irreversible complexation with Hg(II). Only a weak response toward ionic liquids, [C2mim]Cl and ChCl, was registered. Unlike LS-based composites comprising MWCNTs, those doped with graphene oxide (GO), reduced GO (rGO), and graphite (Gr) did not reveal the same electrical conductivity, even with loads up to 10% (w/w), in the polymer composite. This fact is associated, at least partially, with the different filler dispersion abilities within the polymeric matrix.


2021 ◽  
Vol 8 ◽  
Author(s):  
Josué M. Gonçalves ◽  
Irlan S. Lima ◽  
Nathália F. B. Azeredo ◽  
Diego P. Rocha ◽  
Abner de Siervo ◽  
...  

Multifunctional nanomaterials have been attracting increasing attention as solutions to the existing challenges in energy systems and sensing technologies. In this regard, multifunctional NiVCe-layered double hydroxide (NiVCe-LDH) nanoparticles were synthesized by the modified sol-gel method. The analysis of this material demonstrated excellent potential for its utilization as electrode materials for hybrid supercapacitor, oxygen evolution reaction (OER), and sensor applications. The NiVCe-LDH nanoparticles delivered a specific charge of 740 C g−1 at 10 A g−1 and decent rate performance (charge retention of 68.7% at 100 A g−1), showing excellent prospects as electrode material for hybrid energy storage devices. In addition, NiVCe-LDH nanoparticles have also been successfully applied as a proof-of-concept for OER, as confirmed by their low Tafel slope of 47 mV dec−1. Finally, trimetallic NiVCe-LDH-based screen-printed electrodes were developed for the sensing of hydrogen peroxide directly in a real complex mouthwash sample, achieving a satisfactory recovery value of around 98% using a fast and simple batch injection analysis procedure. These results allow us to predict the great potential of this trimetallic hydroxide for building electrochemical sensors with good perspectives as electroactive material for OER processes and energy storage technologies.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1406 ◽  
Author(s):  
Ayman H. Kamel ◽  
Abd El-Galil E. Amr ◽  
Nashwa H. Ashmawy ◽  
Hoda R. Galal ◽  
Mohamed A. Al-Omar ◽  
...  

Herein, we present for the first time a novel potentiometric sensor based on the stimulus-responsive molecularly imprinted polymer (MIP) as a selective receptor for neutral dopamine determination. This smart receptor can change its capabilities to recognize according to external environmental stimuli. Therefore, MIP-binding sites can be regenerated in the polymeric membrane by stimulating with stimulus after each measurement. Based on this effect, reversible detection of the analyte via potentiometric transduction can be achieved. MIPs based on 4-vinylphenylboronic acid as the functional monomer were prepared as the selective receptor. This monomer can successfully bind to dopamine via covalent binding and forming a five- or six-membered cyclic ester in a weakly alkaline aqueous solution. In acidic medium, the produced ester dissociates and regenerates new binding sites in the polymeric membrane. The proposed smart sensor exhibited fast response and good sensitivity towards dopamine with a limit of detection 0.15 µM over the linear range 0.2–10 µM. The selectivity pattern of the proposed ISEs was also evaluated and revealed an enhanced selectivity towards dopamine over several phenolic compounds. Constant-current chronopotentiometry is used for evaluating the short-term potential stability of the proposed ISEs. The obtained results confirm that the stimulus-responsive MIPs provide an attractive way towards reversible MIP-based electrochemical sensors designation.


Chemosensors ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 149
Author(s):  
André Olean-Oliveira ◽  
Gilberto A. Oliveira Brito ◽  
Celso Xavier Cardoso ◽  
Marcos F. S. Teixeira

The use of graphene and its derivatives in the development of electrochemical sensors has been growing in recent decades. Part of this success is due to the excellent characteristics of such materials, such as good electrical and mechanical properties and a large specific surface area. The formation of composites and nanocomposites with these two materials leads to better sensing performance compared to pure graphene and conductive polymers. The increased large specific surface area of the nanocomposites and the synergistic effect between graphene and conducting polymers is responsible for this interesting result. The most widely used methodologies for the synthesis of these materials are still based on chemical routes. However, electrochemical routes have emerged and are gaining space, affording advantages such as low cost and the promising possibility of modulation of the structural characteristics of composites. As a result, application in sensor devices can lead to increased sensitivity and decreased analysis cost. Thus, this review presents the main aspects for the construction of nanomaterials based on graphene oxide and conducting polymers, as well as the recent efforts made to apply this methodology in the development of sensors and biosensors.


2000 ◽  
Vol 416 (2) ◽  
pp. 139-144 ◽  
Author(s):  
Dong Liu ◽  
Jianhong Liu ◽  
Deyu Tian ◽  
Weiliang Hong ◽  
Xiaomin Zhou ◽  
...  

2021 ◽  
Author(s):  
Chan Wang ◽  
Longbin Qi ◽  
Rongning Liang

Polymeric membrane potentiometric sensors based on molecularly imprinted polymer (MIP) have been successfully designed for detection of organic compounds both in ionic and neutral forms. However, most of these sensors...


2000 ◽  
Vol 104 (34) ◽  
pp. 8201-8209 ◽  
Author(s):  
Werner E. Morf ◽  
Martin Badertscher ◽  
Titus Zwickl ◽  
Patrick Reichmuth ◽  
Nicolaas F. de Rooij ◽  
...  

1999 ◽  
Vol 34 (3) ◽  
pp. 391-422
Author(s):  
M.R. Servos ◽  
J.L. Parrott ◽  
J.P. Sherry ◽  
S.B. Brown

Abstract Defining virtual elimination has created considerable debate. A traditional approach has been to use chemically defined detection limits or levels of quantification that are determined using the best currently available methodologies. Ever increasing improvements in analytical techniques could lead to corresponding pressure to reduce the targets for virtual elimination. The current Toxic Substances Management Policy in Canada recognizes this and clearly states that it is not the intent of virtual elimination to have a moving target or to chase down the last molecule of the chemical of concern. Although it may be possible to reduce a chemical to less than some extremely sensitive detection limit, the chemical may or may not exert biological effects at that level. The chemically defined detection limits may be much lower than background levels in the environment, making it an unrealistic target. Conversely biological responses may result from trace levels of a compound that are not detectable in effluents or selected compartments of the environment (i.e., water) using current chemical techniques. Alternatively, an effect-based approach can establish biologically meaningful endpoints to defining virtual elimination. Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) are used in this study as an example to evaluate the advantages and limitations of several possible approaches of using biological endpoints to determine the presence of these compounds in the environment and ultimately define virtual elimination. A review of the biological responses to PCDD/PCDFs is included to demonstrate the importance of selecting appropriate biological endpoints. Mixed function oxygenase (MFO) induction, although not recommended at this point, is used as an example of a possible sensitive endpoint that could potentially be used to detect exposure of biota to these chemicals. Three different approaches are explored: (1) measuring MFO induction in a sentinel species in the environment; (2) testing environmental extracts for MFO induction in cell lines; and (3) using biological endpoints (MFO induction) to define chemical targets for virtual elimination. While the use of biological end-points is the most desirable approach to defining virtual elimination, there are significant knowledge gaps which limit our selection and application of this approach.


2002 ◽  
Vol 14 (19-20) ◽  
pp. 1419-1425 ◽  
Author(s):  
R. Daniel Johnson ◽  
Alain Pinchart ◽  
Ibrahim H. A. Badr ◽  
Marc Gingras ◽  
Leonidas G. Bachas

Sign in / Sign up

Export Citation Format

Share Document