scholarly journals Sharp Interface Capturing in Compressible Multi-Material Flows with a Diffuse Interface Method

2021 ◽  
Vol 11 (24) ◽  
pp. 12107
Author(s):  
Shambhavi Nandan ◽  
Christophe Fochesato ◽  
Mathieu Peybernes ◽  
Renaud Motte ◽  
Florian De Vuyst

Compressible multi-materialflows are encountered in a wide range of natural phenomena and industrial applications, such as supernova explosions in space, high speed flows in jet and rocket propulsion, underwater explosions, and vapor explosions in post accidental situations in nuclear reactors. In the numerical simulations of these flows, interfaces play a crucial role. A poor numerical resolution of the interfaces could make it difficult to account for the physics, such as material separation, location of the shocks and contact discontinuities, and transfer of the mass, momentum and heat between different materials/phases. Owing to such importance, sharp interface capturing remains an active area of research in the field of computational physics. To address this problem in this paper we focus on the Interface Capturing (IC) strategy, and thus we make use of a newly developed Diffuse Interface Method (DIM) called Multidimensional Limiting Process-Upper Bound (MLP-UB). Our analysis shows that this method is easy to implement, can deal with any number of material interfaces, and produces sharp, shape-preserving interfaces, along with their accurate interaction with the shocks. Numerical experiments show good results even with the use of coarse meshes.

2020 ◽  
Vol 44 (3) ◽  
pp. 395-404
Author(s):  
Morvarid Memarianpour ◽  
Seyed Ali Niknam ◽  
Sylvain Turenne ◽  
Marek Balazinski

Three distinctive regions of tool wear, known as initial wear, steady-state wear, and accelerated wear, are well understood. However, the effects of cutting parameters on the initial tool wear mechanism, morphology, and size have received less attention as compared to the other two regions. Knowing that adequate control of initial tool wear may lead to extended tool life, in particular in hard-to-cut metals such as superalloys, this topic has become a source of attention. Amongst superalloys, Inconel 718 is considered as one of the most difficult to cut materials, which has a wide range of industrial applications. This study intends to evaluate the effects of cutting parameters on initial tool wear, as well as tool wear progression, when turning Inconel 718. Therefore, microstructural evaluation of the initial tool wear mode under various cutting conditions, as well as tool wear measurements, were conducted. It was observed that certain elements of the workpieces were migrated to the insert flank face. This is evidence of adhesion at the initial moments of the cutting process. In contrast to many other easy-to-cut materials, the steady-state wear period when turning Inconel 718 is significantly short under a higher level of cutting speed and feed rate.


Author(s):  
Alexander Czechowicz ◽  
Jonas Böttcher ◽  
Sebastian Mojrzisch ◽  
Sven Langbein

Due to their ability to change into a previously imprinted actual shape through the means of thermal and electrical activation, shape memory alloys (SMA) are suitable as actuators. To apply these smart materials to a wide range of high-speed applications like valves or safety systems, an analysis of the application potential is required. The detection of inner electrical resistance of SMA actuators allows gauging the actuator’s stroke. By usage of a microcontroller a smart system without any hardware sensors can be realized which protects the system from overheating during high-current activation. The publication concentrates on different experimental data on high-speed actuation under 20ms and the potentials in the field of industrial applications. The paper gives an overview about different controlling methods for SMA-actuators, experiments concerning the resistance behavior of SMA and the development of systems using a resistance control feedback signal during high-speed activation.


2011 ◽  
Vol 133 (6) ◽  
Author(s):  
Amine Koched ◽  
Michel Pavageau ◽  
Fethi Aloui

In this study, we are interested in the hydrodynamics of impinging plane jets. Plane jets are widely used in ambience separation in HVAC, fire safety, food process engineering, cooling of electronic components etc. Despite their important industrial applications, plane jets have not been studied as extensively as axisymmetric jets. Plane jets exhibit different kind of instabilities stemming from either streamlines with strong curvature in the impingement region or inflection points in the transverse profile of the streamwise component velocity in the lateral mixing layers. Previous works in the GEPEA laboratory were performed on these flows. These works and the majority of the studies reported in the literature deal with turbulent air jets in various configurations. Very little studies have been done on water impinging jets. Taking into account the fact that the viscosity of water is smaller than air, at the same Reynolds number, it is easier to detect phenomena such as vortices. Phenomena can be observed at lower velocities making it possible to record signals with standard frequency bandwidths. This makes it easier also to do a Lagrangian tracking of vortices. We specially focused our study on the impinging zone of the jet. The dynamics of the impinging zone has not formed the subject of numerous studies. There were no studies that characterize the vortices at the impinging region of water jets in terms of size, centre position, vortex intensity, convection velocities, eccentricity, statistical distribution and turbulent length and time scales. Consequently, a confined water plane jet impinging a flat plate was studied using standard and high speed PIV (Particle Image Velocimetry). We used POD decomposition for filtering PIV data. Then, we applied the λ2 criterion to the recorded velocity fields to detect and characterize the vortices at the impingement. A statistical analysis was then performed. Turbulent length scales, time scales and convection velocities of eddies occurring at the impingement were determined using two point space time correlations. The obtained results were correlated to the dynamics and geometric properties of the jet. A wide range of Reynolds numbers is considered: 3000, 6000, 11000 and 16000. The corresponding results are presented in this paper.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 4014 ◽  
Author(s):  
Bo Chen ◽  
Juan Abascal ◽  
Manuchehr Soleimani

Electrical resistance tomography (ERT) is an imaging technique to recover the conductivity distribution with boundary measurements via attached electrodes. There are a wide range of applications using ERT for image reconstruction or parameter calculation due to high speed data collection, low cost, and the advantages of being non-invasive and portable. Although ERT is considered a high temporal resolution method, a temporally regularized method can greatly enhance such a temporal resolution compared to frame-by-frame reconstruction. In some of the cases, especially in the industrial applications, dynamic movement of an object is critical. In practice, it is desirable for monitoring and controlling the dynamic process. ERT can determine the spatial conductivity distribution based on previous work, and ERT potentially shows good performance in exploiting temporal information as well. Many ERT algorithms reconstruct images frame by frame, which is not optimal and would assume that the target is static during collection of each data frame, which is inconsistent with the real case. Although spatiotemporal-based algorithms can account for the temporal effect of dynamic movement and can generate better results, there is not that much work aimed at analyzing the performance in the time domain. In this paper, we discuss the performance of a novel spatiotemporal total variation (STTV) algorithm in both the spatial and temporal domain, and Temporal One-Step Tikhonov-based algorithms were also employed for comparison. The experimental results show that the STTV has a faster response time for temporal variation of the moving object. This robust time response can contribute to a much better control process which is the main aim of the new generation of process tomography systems.


2017 ◽  
Vol 140 (5) ◽  
Author(s):  
Akshay Subramaniam ◽  
Niranjan S. Ghaisas ◽  
Sanjiva K. Lele

We develop a new high-order numerical method for continuum simulations of multimaterial phenomena in solids exhibiting elastic–plastic behavior using the diffuse interface numerical approximation. This numerical method extends an earlier single material high-order formulation that uses a tenth-order high-resolution compact finite difference scheme in conjunction with a localized artificial diffusivity (LAD) method for shock and contact discontinuity capturing. The LAD method is extended here to the multimaterial formulation and is shown to perform well for problems involving shock waves, material interfaces and interactions between the two. Accuracy of the proposed approach in terms of formal order (eighth-order) and numerical resolution is demonstrated using a suite of test problems containing smooth solutions. Finally, the Richtmyer–Meshkov (RM) instability between copper and aluminum is simulated in two-dimensional (2D) and a parametric study is performed to assess the effect of initial perturbation amplitude and yield stress.


2019 ◽  
Vol 16 (2) ◽  
pp. 172988141984298
Author(s):  
Alejandro González ◽  
Emilio J Gonzalez-Galvan ◽  
Mauro Maya ◽  
Antonio Cardenas ◽  
Davide Piovesan

Parallel robots have a growing range of applications due to their appealing characteristics (high speed and acceleration, increased rigidity, etc.). However, several open problems make it difficult to model and control them. Low computational-cost algorithms are needed for high speed tasks where high accelerations are required. This article develops the nonlinear camera-space manipulation method and makes use of an extended Kalman filter (EKF) for the estimation of the camera-space manipulation parameters. This is presented as an alternative to the traditional method which can be time consuming while reaching convergence. The proposed camera-space manipulation parameter identification was performed in positioning tasks for a parallel manipulator and the experimental results are reported. Results show that it is possible to estimate the set of camera-space manipulation parameters by means of an extended Kalman filter. Using the proposed Kalman filter method we observed a significant reduction of the computational effort when estimating the camera-space manipulation parameters. However, there was no significant reduction of the robot’s positioning error. The proposed extended Kalman filter implementation requires only 2 ms to update the camera-space manipulation parameters compared to the 85 ms required by the traditional camera-space manipulation algorithm. Such time reduction is beneficial for the implementation of the method for a wide range of high speed and industrial applications. This article presents a novel use of an extended Kalman filter for the real-time estimation of the camera-space manipulation parameters and shows that it can be used to increase the positioning accuracy of a parallel robot.


Author(s):  
E.D. Wolf

Most microelectronics devices and circuits operate faster, consume less power, execute more functions and cost less per circuit function when the feature-sizes internal to the devices and circuits are made smaller. This is part of the stimulus for the Very High-Speed Integrated Circuits (VHSIC) program. There is also a need for smaller, more sensitive sensors in a wide range of disciplines that includes electrochemistry, neurophysiology and ultra-high pressure solid state research. There is often fundamental new science (and sometimes new technology) to be revealed (and used) when a basic parameter such as size is extended to new dimensions, as is evident at the two extremes of smallness and largeness, high energy particle physics and cosmology, respectively. However, there is also a very important intermediate domain of size that spans from the diameter of a small cluster of atoms up to near one micrometer which may also have just as profound effects on society as “big” physics.


2019 ◽  
Author(s):  
James Ewen ◽  
Carlos Ayestaran Latorre ◽  
Arash Khajeh ◽  
Joshua Moore ◽  
Joseph Remias ◽  
...  

<p>Phosphate esters have a wide range of industrial applications, for example in tribology where they are used as vapour phase lubricants and antiwear additives. To rationally design phosphate esters with improved tribological performance, an atomic-level understanding of their film formation mechanisms is required. One important aspect is the thermal decomposition of phosphate esters on steel surfaces, since this initiates film formation. In this study, ReaxFF molecular dynamics simulations are used to study the thermal decomposition of phosphate esters with different substituents on several ferrous surfaces. On Fe<sub>3</sub>O<sub>4</sub>(001) and α-Fe(110), chemisorption interactions between the phosphate esters and the surfaces occur even at room temperature, and the number of molecule-surface bonds increases as the temperature is increased from 300 to 1000 K. Conversely, on hydroxylated, amorphous Fe<sub>3</sub>O<sub>4</sub>, most of the molecules are physisorbed, even at high temperature. Thermal decomposition rates were much higher on Fe<sub>3</sub>O<sub>4</sub>(001) and particularly α-Fe(110) compared to hydroxylated, amorphous Fe<sub>3</sub>O<sub>4</sub>. This suggests that water passivates ferrous surfaces and inhibits phosphate ester chemisorption, decomposition, and ultimately film formation. On Fe<sub>3</sub>O<sub>4</sub>(001), thermal decomposition proceeds mainly through C-O cleavage (to form surface alkyl and aryl groups) and C-H cleavage (to form surface hydroxyls). The onset temperature for C-O cleavage on Fe<sub>3</sub>O<sub>4</sub>(001) increases in the order: tertiary alkyl < secondary alkyl < primary linear alkyl ≈ primary branched alkyl < aryl. This order is in agreement with experimental observations for the thermal stability of antiwear additives with similar substituents. The results highlight surface and substituent effects on the thermal decomposition of phosphate esters which should be helpful for the design of new molecules with improved performance.</p>


Alloy Digest ◽  
1970 ◽  
Vol 19 (11) ◽  

Abstract PLATINUM is a soft, ductile, white metal which can be readily worked either hot or cold. It has a wide range of industrial applications because of its excellent corrosion and oxidation resistance and its high melting point. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Pt-1. Producer or source: Matthey Bishop Inc..


Sign in / Sign up

Export Citation Format

Share Document