scholarly journals Estimation of Sine Inverse Exponential Model under Censored Schemes

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
M. Shrahili ◽  
I. Elbatal ◽  
Waleed Almutiry ◽  
Mohammed Elgarhy

In this article, we introduce a new one-parameter model, which is named sine inverted exponential (SIE) distribution. The SIE distribution is a new extension of the inverse exponential (IE) distribution. The SIE distribution aims to provide the SIE model for data-fitting purposes. The SIE distribution is more flexible than the inverted exponential (IE) model, and it has many applications in physics, medicine, engineering, nanophysics, and nanoscience. The density function (PDFu) of SIE distribution can be unimodel shape and right skewed shape. The hazard rate function (HRFu) of SIE distribution can be J-shaped and increasing shaped. We investigated some fundamental statistical properties such as quantile function (QFu), moments (Mo), moment generating function (MGFu), incomplete moments (ICMo), conditional moments (CMo), and the SIE distribution parameters were estimated using the maximum likelihood (ML) method for estimation under censored samples (CS). Finally, the numerical results were investigated to evaluate the flexibility of the new model. The SIE distribution and the IE distribution are compared using two real datasets. The numerical results show the superiority of the SIE distribution.

Author(s):  
Emmanuel W. Okereke ◽  
Johnson Ohakwe

AbstractIn this paper, we defined and studied a new distribution called the odd exponentiated half-logistic Burr III distribution. Properties such as the linear representation of the probability density function (PDF) of the distribution, quantile function, ordinary and incomplete moments, moment generating function and distribution of the order statistic were derived. The PDF and hazard rate function were found to be capable of having various shapes, making the new distribution highly flexible. In particular, the hazard rate function can be nonincreasing, unimodal and nondecreasing. It can also have the bathtub shape among other non- monotone shapes. The maximum likelihood procedure was used to estimate the parameters of the new model. We gave two numerical examples to illustrate the usefulness and the ability of the distribution to provide better fits to a number of data sets than several distributions in existence.Keywords: Burr III distribution; maximum likelihood procedure; moments; odd exponentiated half-logistic-G family; order statistics. AbstrakPada artikel ini akan didefinisikan dan dipelajari mengenai distribusi baru yang disebut distribusi Burr III setengah logistik tereksponen ganjil. Kami menurunkan beberapa sifat dari distribusi tersebut yaitu representasi linier dari fungsi kepadatan peluang (FKP), fungsi kuantil, momen biasa dan momen tidak lengkap, fungsi pembangkit momen dan distribusi statistik terurut. Fungsi FKP dan fungsi tingkat hazard diperoleh memiliki bermacam-macam bentuk, membuat distribusi baru ini sangat fleksibel. Secara khusus, fungsi tingkat hazard dapat berupa fungsi taknaik, bermodus tunggal, bisa juga tidak turun. Selain itu, fungsi ini juga dapat berbentuk seperti bak mandi di antara bentuk-bentuk tak monoton lainnya. Prosedur kemungkinan maksimum digunakan untuk mengestimasi parameter model yang baru. Kami memberikan dua contoh numerik untuk mengilustrasikan kegunaan dan kemampuan distribusi untuk menghasilkan kesesuaian yang lebih baik pada sejumlah kumpulan data dibandingkan beberapa distribusi yang ada.Kata kunci: distribusi Burr III; prosedur kemungkinan maksimum; momen; keluarga setengah logistik-G teresponen ganjil; statistic terurut.


2017 ◽  
Vol 13 (3) ◽  
pp. 7205-7218
Author(s):  
Shimaa A. Dessoky ◽  
Ahmed M. T. Abd El-Bar

This paper deals with a new generalization of the Weibull distribution. This distribution is called exponentiated exponentiated exponential-Weibull (EEE-W) distribution. Various structural properties of the new probabilistic model are considered, such as hazard rate function, moments, moment generating function, quantile function, skewness, kurtosis, Shannon entropy and Rényi entropy. The maximum likelihood estimates of its unknown parameters are obtained. Finally, areal data set is analyzed and it observed that the present distribution can provide a better fit than some other known distributions.


Author(s):  
Bashiru Omeiza Sule

The quest by researchers in the area of distribution theory in proposing new models with greater flexibility has filled literature. On this note, we proposed a new distribution called the new extended generalized inverse exponential distribution with five positive parameters, which extends and generalizes the extended generalized inverse exponential distribution. We derive some mathematical properties of the proposed model including explicit expressions for the quantile function, moments, generating function, survival, hazard rate, reversed hazard rate, cumulative hazard rate function and odds functions. The method of maximum likelihood is used to estimate the parameters of the distribution. We illustrate its potentiality with applications to three real life data sets which show that the new extended generalized inverse exponential model provides greater flexibility and better fit than other competing models considered.


2017 ◽  
Vol 9 (4) ◽  
pp. 135
Author(s):  
Loai M. A. Al-Zou'bi

A new continuous distribution is proposed in this paper. This distribution is a generalization of Mukherjee-Islam distribution using the quadratic rank transmutation map. It is called transmuted Mukherjee-Islam distribution (TMID). We have studied many properties of the new distribution: Reliability and hazard rate functions. The descriptive statistics: mean, variance, skewness, kurtosis are also studied. Maximum likelihood method is used to estimate the distribution parameters. Order statistics and Renyi and Tsallis entropies were also calculated. Furthermore, the quantile function and the median are calculated.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Waleed Almutiry ◽  
Amani Abdullah Alahmadi ◽  
Ibrahim Elbatal ◽  
Ibrahim E. Ragab ◽  
Oluwafemi Samson Balogun ◽  
...  

This paper is devoted to a new lifetime distribution having three parameters by compound the exponential model and the transmuted Topp-Leone-G. The new proposed model is called the transmuted Topp-Leone exponential model; it is useful in lifetime data and reliability. The new model is very flexible; its pdf can be right skewness, unimodal, and decreasing shaped, but the hrf of the suggested model can be unimodal, constant, and decreasing. Numerous statistical characteristics of the new model, notably the quantile function, moments, incomplete moments, conditional moments, mean residual life, mean inactivity time, and entropy are produced and investigated. The system’s parameters are estimated using the maximum likelihood approach. All estimators should be theoretically convergent, which is supported by a simulation analysis. Finally, two real-world datasets from the engineering and medical disciplines explore the new model’s relevance and adaptability in comparison to the alternatives models such as the beta exponential, the Marshall–Olkin generalized exponential, the exponentiated Weibull, the modified Weibull, and the transmuted Burr type X models.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1662
Author(s):  
Ahmed Sayed M. Metwally ◽  
Amal S. Hassan ◽  
Ehab M. Almetwally ◽  
B M Golam Kibria ◽  
Hisham M. Almongy

The inverted Topp–Leone distribution is a new, appealing model for reliability analysis. In this paper, a new distribution, named new exponential inverted Topp–Leone (NEITL) is presented, which adds an extra shape parameter to the inverted Topp–Leone distribution. The graphical representations of its density, survival, and hazard rate functions are provided. The following properties are explored: quantile function, mixture representation, entropies, moments, and stress–strength reliability. We plotted the skewness and kurtosis measures of the proposed model based on the quantiles. Three different estimation procedures are suggested to estimate the distribution parameters, reliability, and hazard rate functions, along with their confidence intervals. Additionally, stress–strength reliability estimators for the NEITL model were obtained. To illustrate the findings of the paper, two real datasets on engineering and medical fields have been analyzed.


Author(s):  
Sule Ibrahim ◽  
Bello Olalekan Akanji ◽  
Lawal Hammed Olanrewaju

We propose a new distribution called the extended generalized inverse exponential distribution with four positive parameters, which extends the generalized inverse exponential distribution. We derive some mathematical properties of the proposed model including explicit expressions for the quantile function, moments, generating function, survival, hazard rate, reversed hazard rate and odd functions. The method of maximum likelihood is used to estimate the parameters of the distribution. We illustrate its potentiality with applications to two real data sets which show that the extended generalized inverse exponential model provides a better fit than other models considered.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
M. Shrahili ◽  
I. Elbatal ◽  
Mohammed Elgarhy

A new lifetime distribution with two parameters, known as the sine half-logistic inverse Rayleigh distribution, is proposed and studied as an extension of the half-logistic inverse Rayleigh model. The sine half-logistic inverse Rayleigh model is a new inverse Rayleigh distribution extension. In the application section, we show that the sine half-logistic inverse Rayleigh distribution is more flexible than the half-logistic inverse Rayleigh and inverse Rayleigh distributions. The statistical properties of the half-logistic inverse Rayleigh model are calculated, including the quantile function, moments, moment generating function, incomplete moment, and Lorenz and Bonferroni curves. Entropy measures such as Rényi entropy, Havrda and Charvat entropy, Arimoto entropy, and Tsallis entropy are proposed for the sine half-logistic inverse Rayleigh distribution. To estimate the sine half-logistic inverse Rayleigh distribution parameters, statistical inference using the maximum likelihood method is used. Applications of the sine half-logistic inverse Rayleigh model to real datasets demonstrate the flexibility of the sine half-logistic inverse Rayleigh distribution by comparing it to well-known models such as half-logistic inverse Rayleigh, type II Topp–Leone inverse Rayleigh, transmuted inverse Rayleigh, and inverse Rayleigh distributions.


2021 ◽  
Vol 5 (1) ◽  
pp. 218-235
Author(s):  
Christophe Chesneau ◽  

This article proposes a new unit distribution based on the power-logarithmic scheme. The corresponding cumulative distribution function is defined by a special ratio of power and logarithmic functions that is dependent on one parameter. We show that this function benefits from great flexibility characterized by a large selection of convex and concave shapes. The other key functions are determined and studied. In particular, we show that the probability density function may take on different decreasing or U shapes, and the hazard rate function has a wide panel of U shapes. These functional capabilities are rare for a one-parameter unit distribution. In addition, we prove certain stochastic order results, provide the expression of the quantile function via the Lambert function, some interesting distributional results, and give simple expressions for the ordinary moments, mean, variance, skewness, kurtosis, moment generating function and incomplete moments. Subsequently, a basic statistical approach is described, to show how the new distribution can be applied in a data analysis scenario. Finally, complementary mathematical findings are presented, yielding new integrals linked to the Euler constant via some well-known moments properties.


2021 ◽  
Vol 16 (2) ◽  
pp. 2733-2747
Author(s):  
Joseph Thomas Eghwerido

Statistical distribution that represents the true characteristics of real-life data is paramount to data analysis. Thus, this study introduces a tractable alpha power Teissier distribution (APOT). Some statistical properties of the proposed model like moments, probability generating function, moment generating function and order statistic were examined. The shape of the hazard rate and survival functions were investigated. The shapes of the hazard rate function indicated increasing, decreasing, J-shaped and bathtub shapes. The results of the data analysis indicated that the APOT model performed better when compared to some existing classical statistical distributions.


Sign in / Sign up

Export Citation Format

Share Document