model discrepancy
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 29)

H-INDEX

7
(FIVE YEARS 2)

2022 ◽  
Vol 168 ◽  
pp. 108717
Author(s):  
Yi-Chen Zhu ◽  
Paul Gardner ◽  
David J. Wagg ◽  
Robert J. Barthorpe ◽  
Elizabeth J. Cross ◽  
...  

2022 ◽  
Vol 19 (3) ◽  
pp. 2800-2818
Author(s):  
Yan Wang ◽  
◽  
Guichen Lu ◽  
Jiang Du ◽  

<abstract><p>A Susceptible Infective Recovered (SIR) model is usually unable to mimic the actual epidemiological system exactly. The reasons for this inaccuracy include observation errors and model discrepancies due to assumptions and simplifications made by the SIR model. Hence, this work proposes calibration and prediction methods for the SIR model with a one-time reported number of infected cases. Given that the observation errors of the reported data are assumed to be heteroscedastic, we propose two predictors to predict the actual epidemiological system by modeling the model discrepancy through a Gaussian Process model. One is the calibrated SIR model, and the other one is the discrepancy-corrected predictor, which integrates the calibrated SIR model with the Gaussian Process predictor to solve the model discrepancy. A wild bootstrap method quantifies the two predictors' uncertainty, while two numerical studies assess the performance of the proposed method. The numerical results show that, the proposed predictors outperform the existing ones and the prediction accuracy of the discrepancy-corrected predictor is improved by at least $ 49.95\% $.</p></abstract>


2021 ◽  
Author(s):  
Anu Kauppi ◽  
Antti Kukkurainen ◽  
Antti Lipponen ◽  
Marko Laine ◽  
Antti Arola ◽  
...  

Abstract. We present here an aerosol model selection based statistical method in Bayesian framework for retrieving atmospheric aerosol optical depth (AOD) and pixel-level uncertainty. Especially, we focus on to provide more realistic uncertainty estimate by taking into account a model selection problem when searching for the solution by fitting look-up table (LUT) models to a satellite measured top-of-atmosphere reflectance. By means of Bayesian model averaging over the best-fitting aerosol models we take into account an aerosol model selection uncertainty and get also a shared inference about AOD. Moreover, we acknowledge model discrepancy, i.e. forward model error, arising from approximations and assumptions done in forward model simulations. We have estimated the model discrepancy empirically by a statistical approach utilizing residuals of model fits. We use the measurements from the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor in ultraviolet and visible bands, and in one wavelength band 675 nm in near-infrared, in order to study the functioning of the retrieval in a broad wavelength range. We exploit a fundamental classification of the aerosol models as weakly absorbing, biomass burning and desert dust aerosols. For experimental purpose we have included some dust type of aerosols having non-spherical particle shapes. For this study we have created the aerosol model LUTs with radiative transfer simulations using the libRadtran software package. It is reasonably straightforward to experiment with different aerosol types and evaluate the most probable aerosol type by the model selection method. We demonstrate the method in wildfire and dust events in a pixel level. In addition, we have evaluated in detail the results against ground-based remote sensing data from the AErosol RObotic NETwork (AERONET). Based on the case studies the method has ability to identify the appropriate aerosol types, but in some wildfire cases the AOD is overestimated compared to the AERONET result. The resulting uncertainty when accounting for the model selection problem and the imperfect forward modelling is higher compared to uncertainty when only measurement error is included in an observation model, as can be expected.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chon Lok Lei ◽  
Gary R. Mirams

Mathematical models of cardiac ion channels have been widely used to study and predict the behaviour of ion currents. Typically models are built using biophysically-based mechanistic principles such as Hodgkin-Huxley or Markov state transitions. These models provide an abstract description of the underlying conformational changes of the ion channels. However, due to the abstracted conformation states and assumptions for the rates of transition between them, there are differences between the models and reality—termed model discrepancy or misspecification. In this paper, we demonstrate the feasibility of using a mechanistically-inspired neural network differential equation model, a hybrid non-parametric model, to model ion channel kinetics. We apply it to the hERG potassium ion channel as an example, with the aim of providing an alternative modelling approach that could alleviate certain limitations of the traditional approach. We compare and discuss multiple ways of using a neural network to approximate extra hidden states or alternative transition rates. In particular we assess their ability to learn the missing dynamics, and ask whether we can use these models to handle model discrepancy. Finally, we discuss the practicality and limitations of using neural networks and their potential applications.


PALAPA ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 182-198
Author(s):  
Pinton Setya Mustafa

Programs designed to advance education continue to progress and develop dynamically. Improving the program requires an evaluation process. There are various evaluation models used in improving educational programs depending on the aspects needed for improvement or refinement. The purpose of this research is to discuss the basic concepts of the discrepancy model evaluation made by Provus. This research is a library study with data obtained through the study of relevant books and articles and then analyzed using a qualitative approach consisting of: (1) data reduction, (2) data display, and (3) drawing conclusions. Evaluation The discrepancy model is one type of appropriate approach in evaluating an educational and learning program. The procedures used in the discrepancy evaluation are (1) design, (2) installation, (3) process, (4) product, and (5) comparison or the fifth in the form of costs and benefits if needed. The result of the discrepancy model evaluation is knowing the gap between the expected conditions and the reality on the ground, so that it can be a guide for the next step in making decisions.


2021 ◽  
Vol 152 ◽  
pp. 107381
Author(s):  
P. Gardner ◽  
T.J. Rogers ◽  
C. Lord ◽  
R.J. Barthorpe

2021 ◽  
Vol 9 (1) ◽  
pp. 231-259
Author(s):  
Wenyu Li ◽  
Arun Hegde ◽  
James Oreluk ◽  
Andrew Packard ◽  
Michael Frenklach

2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Berkcan Kapusuzoglu ◽  
Matthew Sato ◽  
Sankaran Mahadevan ◽  
Paul Witherell

Abstract This paper develops a computational framework to optimize the process parameters such that the bond quality between extruded polymer filaments is maximized in fused filament fabrication (FFF). A transient heat transfer analysis providing an estimate of the temperature profile of the filaments is coupled with a sintering neck growth model to assess the bond quality that occurs at the interfaces between adjacent filaments. Predicting the variability in the FFF process is essential for achieving proactive quality control of the manufactured part; however, the models used to predict the variability are affected by assumptions and approximations. This paper systematically quantifies the uncertainty in the bond quality model prediction due to various sources of uncertainty, both aleatory and epistemic, and includes the uncertainty and the model discrepancy in the process parameter optimization. Variance-based sensitivity analysis based on Sobol’ indices is used to quantify the relative contributions of the different uncertainty sources to the uncertainty in the bond quality. A Gaussian process (GP) surrogate model is constructed to compute and include the model discrepancy within the optimization. Physical experiments are conducted for calibration and validation of the physics model and also for validation of the optimum solution. The results show that the proposed formulation for process parameter optimization under uncertainty results in high bond quality between adjoining filaments of the FFF product.


2020 ◽  
Vol 10 (17) ◽  
pp. 5813
Author(s):  
Rosario Ceravolo ◽  
Alessio Faraci ◽  
Gaetano Miraglia

Bayesian model calibration techniques are commonly employed in the characterization of nonlinear dynamic systems, as they provide a conceptual and effective framework to deal with model uncertainties, experimental errors and procedure assumptions. This understanding has resulted in the need to introduce a model discrepancy term to account for the differences between model-based predictions and real observations. Indeed, the goal of this work is to investigate model-driven seismic structural health monitoring procedures based on a Bayesian uncertainty quantification framework, and thus make relevant considerations for its use in the seismic structural health monitoring, focusing on masonry structures. Specifically, the Bayesian inference has been applied to the calibration of nonlinear hysteretic systems to both provide: (i) most probable values (MPV) of the parameters following the calibration; and (ii) estimates of the model discrepancy posterior distribution. The effect of the model discrepancy in the calibration is first illustrated recurring to a single degree of freedom using a Bouc–Wen type oscillator as a numerical benchmark. The model discrepancy is then introduced for calibrating a reference nonlinear Bouc–Wen model derived from real data acquired on a monitored masonry building. The main novelty of this study is the application of the framework of uncertainty quantification on models representing data measured directly on masonry structures during seismic events.


Sign in / Sign up

Export Citation Format

Share Document