scholarly journals The Accelerator Driven Systems, a 21st Century Option for Closing Nuclear Fuel Cycles and Transmuting Minor Actinides

2021 ◽  
Vol 13 (22) ◽  
pp. 12643
Author(s):  
Hamid Aït Abderrahim ◽  
Michel Giot

Closing the nuclear fuel cycle and transmuting Minor Actinides (M.As) can be considered as an application of the duty of care principlel principle which says that, “before the final disposal of any waste, any possible chemical and/or physical treatment has to be applied in order to reduce the waste’s toxicity, provided the treatment does not convey unacceptable risks or unacceptable costs”. Forty years of complex research and development has shown that Accelerator Driven Systems could provide a solution to the challenge posed by spent nuclear fuels, by enabling the ability to considerably decrease their radiotoxicity lifetime burden and volume. In particular, a multilateral strategy of treatment of the MAs could be a commendable solution for both the countries phasing out the exploitation of nuclear energy and for those pursuing and developing this exploitation. The pre-industrial assessment of the technical and financial feasibility for industrialization is the next step. This applies to the four R&D and Demonstration building blocks: advanced separation, MAs’ loaded fuel fabrication, dedicated transmuters demonstration (MYRRHA) and provision for MAs’ fuel loaded processing. A global vision of the process leading to a sustainable option is proposed.

2015 ◽  
Vol 08 ◽  
pp. 99-114 ◽  
Author(s):  
Florent Heidet ◽  
Nicholas R. Brown ◽  
Malek Haj Tahar

This article is a review of several accelerator–reactor interface issues and nuclear fuel cycle applications of accelerator-driven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systems on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.


2018 ◽  
Vol 4 (2) ◽  
pp. 119-125
Author(s):  
Vadim Naumov ◽  
Sergey Gusak ◽  
Andrey Naumov

The purpose of the present study is the investigation of mass composition of long-lived radionuclides accumulated in the fuel cycle of small nuclear power plants (SNPP) as well as long-lived radioactivity of spent fuel of such reactors. Analysis was performed of the published data on the projects of SNPP with pressurized water-cooled reactors (LWR) and reactors cooled with Pb-Bi eutectics (SVBR). Information was obtained on the parameters of fuel cycle, design and materials of reactor cores, thermodynamic characteristics of coolants of the primary cooling circuit for reactor facilities of different types. Mathematical models of fuel cycles of the cores of reactors of ABV, KLT-40S, RITM-200M, UNITERM, SVBR-10 and SVBR-100 types were developed. The KRATER software was applied for mathematical modeling of the fuel cycles where spatial-energy distribution of neutron flux density is determined within multi-group diffusion approximation and heterogeneity of reactor cores is taken into account using albedo method within the reactor cell model. Calculation studies of kinetics of burnup of isotopes in the initial fuel load (235U, 238U) and accumulation of long-lived fission products (85Kr, 90Sr, 137Cs, 151Sm) and actinoids (238,239,240,241,242Pu, 236U, 237Np, 241Am, 244Cm) in the cores of the examined SNPP reactor facilities were performed. The obtained information allowed estimating radiation characteristics of irradiated nuclear fuel and implementing comparison of long-lived radioactivity of spent reactor fuel of the SNPPs under study and of their prototypes (nuclear propulsion reactors). The comparison performed allowed formulating the conclusion on the possibility in principle (from the viewpoint of radiation safety) of application of SNF handling technology used in prototype reactors in the transportation and technological process layouts of handling SNF of SNPP reactors.


Author(s):  
Kimberly Gray ◽  
John Vienna ◽  
Patricia Paviet

In order to maintain the U.S. domestic nuclear capability, its scientific technical leadership, and to keep our options open for closing the nuclear fuel cycle, the Department of Energy, Office of Nuclear Energy (DOE-NE) invests in various R&D programs to identify and resolve technical challenges related to the sustainability of the nuclear fuel cycle. Sustainable fuel cycles are those that improve uranium resource utilization, maximize energy generation, minimize waste generation, improve safety and limit proliferation risk. DOE-NE chartered a Study on the evaluation and screening of nuclear fuel cycle options, to provide information about the potential benefits and challenges of nuclear fuel cycle options and to identify a relatively small number of promising fuel cycle options with the potential for achieving substantial improvements compared to the current nuclear fuel cycle in the United States. The identification of these promising fuel cycles helps in focusing and strengthening the U.S. R&D investment needed to support the set of promising fuel cycle system options and nuclear material management approaches. DOE-NE is developing and evaluating advanced technologies for the immobilization of waste issued from aqueous and electrochemical recycling activities including off-gas treatment and advanced fuel fabrication. The long-term scope of waste form development and performance activities includes not only the development, demonstration, and technical maturation of advanced waste management concepts but also the development and parameterization of defensible models to predict the long-term performance of waste forms in geologic disposal. Along with the finding of the Evaluation and Screening Study will be presented the major research efforts that are underway for the development and demonstration of waste forms and processes including glass ceramic for high-level waste raffinate, alloy waste forms and glass ceramics composites for HLW from the electrochemical processing of fast reactor fuels, and high durability waste forms for radioiodine.


Author(s):  
Thomas J. Downar ◽  
Sean M. McDeavitt ◽  
S. T. Revankar ◽  
A. A. Solomon ◽  
T. K. Kim

Cermet nuclear fuels have significant potential to enhance fuel performance because of low internal fuel temperatures and low stored energy. The combination of these benefits with the inherent proliferation resistance, high burnup capability, and favorable neutronic properties of the thorium fuel cycle provide intriguing options for using thoria based cermet nuclear fuel in advanced nuclear fuel cycles. This paper describes aspects of a Nuclear Energy Research Initiative (NERI) project with two primary goals: (1) Evaluate the feasibility of implementing the thorium fuel cycle in existing or advanced reactors using a zirconium-matrix cermet fuel, and (2) Develop enabling technologies required for the economic application of this new fuel form. The following paper will first describe the fuel thermal performance model developed for the analysis of dispersion metal matrix fuels. The model will then be applied to the design and analysis of thorium/uranium/zirconium metal matrix fuel pins for light water reactors using neutronic simulation methods.


Author(s):  
Yong Han Kim ◽  
Kun Jai Lee ◽  
Won Zin Oh

In order to show that the nuclear energy could be a clean energy, radioactive waste management, especially high level waste has to be successfully managed and also accepted by the public. As discussed, progressed and focused at GEN IV international project, reduction of long lived actinide source term and corresponding toxicity through transmutation process has been recognized as one possible solution to the problem and draw lots of attention these days and active R&D efforts are pursued and progressed worldwidely. Especially, much of interest has been initiated to the accelerator driven system (ADS) for the transmutation of the actinide as a subcritical reactors or combination to fast reactor (FR) to generate energy and transmute the HLW simultaneously in a cleaner and safer ways. This study compare and clarifies the roles and merits of the FR and ADS, which would be expected to be introduced into the future Korean nuclear fuel cycle partly, in view of environmental friendliness especially with the existing nuclear fuel cycle dominated by PWR in Korea. After selecting the most plausible and appropriate reactor strategy scenario, the mass flow balance of active radionuclides from ore to waste for several cases of advanced nuclear fuel cycle (where “advanced nuclear fuel cycle” means the nuclear fuel cycle with FR or ADS) is analyzed by computer code. Advanced nuclear fuel cycle with only FR or ADS, and with both FR and ADS were considered for this analysis. A spread sheet type of code, that compute material flow and some environmental friendliness indices chronologically, was developed and analyzed for the calculation. Some indices for the environmental friendliness (i.e. amount of actinide nuclides, radioactivity and radiotoxicity of them, and uranium resource requirement) for several types of advanced nuclear fuel cycles are analyzed comparing with those of once-through fuel cycle. According to the final results, it confirmed quantitatively that the advanced fuel cycle with FRs and ADSs would be one of the possible alternatives to relieve the burden of HLW waste management because those fuel cycle options might reduce the generation of the transuranic radionuclides by tens to hundreds times less compared to that of once-through fuel cycle. Especially advanced nuclear system combined with FR and ADS shows much better effects compared to not combined system. Resource utilization efficiency is also much upgraded high by the introduction of advanced fuel cycles with a significant high share of fast reactors (i.e. only a half amount of uranium can be consumed in case of introduction of breakeven type FR compared to once-through fuel cycle case.)


Sign in / Sign up

Export Citation Format

Share Document