scholarly journals Sorption of 137Cs and 90Sr on Organic Sorbents

2021 ◽  
Vol 11 (23) ◽  
pp. 11531
Author(s):  
Petr Belousov ◽  
Anna Semenkova ◽  
Yulia Izosimova ◽  
Inna Tolpeshta ◽  
Anna Romanchuk ◽  
...  

The present study examines the sorption of Cs (I) and Sr (II) on organic sorbents in the pH range from 2 to 10, as well as the mechanisms of their binding. In order to determine the influence of the physical properties and the quantity of functional groups of the organic sorbents on sorption, experiments were carried out on organic materials of varying degrees of metamorphism: high-moor peat, hard and brown coals and shungite. A detailed description of their mineral composition, cation exchange capacity, buffering capacity and elemental composition of sorbents is provided. XRD, XRF, SEM and BET adsorption methods were used for assaying. As a result of the conducted research, it can be concluded that Sr (II) showed a higher sorption per unit specific surface area than Cs (I) in the studied range of concentrations and pH values. Sr (II) sorption decreases in the following order: high-moor peat > brown coal > shungite > hard coal. The sorption of Cs (I) is highest on brown coal and lesser for high-moor peat, shungite and hard coal. It is suggested that Cs (I) and Sr (II) can be fixed on carboxyl functional groups and Cs (I), possibly, in insignificant amounts on phenolic hydroxyls of all four studied organic sorbents.

1960 ◽  
Vol 13 (4) ◽  
pp. 567 ◽  
Author(s):  
BM Lynch ◽  
RA Durie

A study was made of the products formed by treating brown coal or lignin with concentrated aqueous or ethanolic alkali at 200 �C. With brown coals a major redistribution of the oxygen-containing functional groups appeared to occur, because the products contained aliphatically linked carboxyl groups and aliphatic hydroxyl, as well as phenolic hydroxyl groups. The behaviour of lignin under the same conditions was less clear but sufficiently similar to that of brown coal to suggest that reactions of the same type were occurring in both cases. Reactions involving decarboxylation, ring scission of dihydric phenol structures, and subsequent hydrogenation are suggested tentatively as the main steps in the formation of the products. The results provide some additional evidence for the view that there is a simple chemical relation between Victorian brown coal and lignin.


1992 ◽  
Vol 57 (10) ◽  
pp. 2089-2094 ◽  
Author(s):  
Ladislav Svoboda ◽  
Leona Čáňová

The effect of pH and ionic strength on the exchange capacity of sorbents based on modified bead cellulose was examined for the sorption of Pb2+ and Cd2+ ions. Ion exchange of these cations in aqueous solutions is nonselective on Ostsorb SA-5, which is cellulose containing functional groups based on H-acid. The medium acidic Ostsorb P cation exchanger with functional groups formed by the phosphoric acid fragment, on the other hand, sorbs lead, and to a lesser extent also cadmium, also at high ionic strengths of the medium even at low pH values.


2019 ◽  
Vol 70 (8) ◽  
pp. 2996-2999
Author(s):  
Viorel Gheorghe ◽  
Catalina Gabriela Gheorghe ◽  
Andreea Bondarev ◽  
Vasile Matei ◽  
Mihaela Bombos

In the experimental study was studied the malachite green colorant biodegradation in biological sludge with biological activity. The biodegradability tests were carried out in laboratory bioreactors, on aqueous solutions of green malachite contacted with microorganisms in which the dominant species is Paramecium caudatum, in a pH range between 8 and 12, temperatures in the ranges 25-350C, using pH neutralizing substances and biomass growth promoters. The colorant initial concentrations and those obtained after biological degradation depending on the contact time, at certain pH values, were established through UV-Vis spectrometry. The studies have shown the measure of possible biological degradation of some organic substances with extended uses, with largely aromatic structure, resistance to biodegradation of microorganisms, commonly used in wastewater treatment plants.


Author(s):  
Svtelana B. Selyanina ◽  
◽  
Marina V. Trufanova ◽  
Svtelana A. Zabelina ◽  
Mikhail V. Bogdanov ◽  
...  

Soil Research ◽  
1981 ◽  
Vol 19 (1) ◽  
pp. 93 ◽  
Author(s):  
GP Gillman

The cation exchange capacity of six surface soils from north Queensland and Hawaii has been measured over a range of pH values (4-6) and ionic strength values (0.003-0.05). The results show that for variable charge soils, modest changes in electrolyte ionic strength are as important in their effect on caton exchange capacity as are changes in pH values.


Holzforschung ◽  
2009 ◽  
Vol 63 (6) ◽  
Author(s):  
Kim Granholm ◽  
Pingping Su ◽  
Leo Harju ◽  
Ari Ivaska

Abstract Chelation of thermomechanical pulp (TMP) was studied in this work. The desorption of Mn, Fe, and Mg due to their impact on peroxide bleaching was investigated. The desorption experiments were performed with EDTA, citric acid, oxalic acid, and formic acid as chelating agents at different pH. Chelation experiments with EDTA were carried out at pH 3–11. Sodium dithionite was used as the reducing agent in studying chelation with EDTA in a reducing environment. Mn was very effectively desorbed with EDTA from TMP at pH <10 and the reducing environment further improved the removal of all the studied metal ions from TMP with EDTA. Citric acid also removed Mn effectively from TMP at pH 5. The thermodynamic stability constants of different metal chelates do not present the correct picture of how strongly the metal ions are bound by the chelating agents in different conditions. But by means of the side reaction coefficients (α M(L)-coefficients) it is also theoretically possible to evaluate and compare the real binding strengths between the metal ions and different chelating agents at varying pH values and other solution conditions. In this study, a theory is given for the calculation of side reaction coefficients. Values of the α M(L)-coefficients, for the pH range 0–14, are presented for EDTA, DTPA, and also for some other new potential environmentally friendly chelating agents.


2021 ◽  
pp. 169-174
Author(s):  
Ivan I. Lishtvan ◽  
Vera N. Aleinikova

Knowledge about structure and rheological peculiarities of drilling solutions and reagents applied for the proceeding of oil wells has significant value for the forecasting of oil wells drilling. The research results of the structure of the humic substances of peat and brown coals precipitated in different pH ranges from the standpoint of their ability to structure formation on the base of the rheological curves obtaining of the flow of their dispersions and determining of their rheological parameters in terms of their application in drilling practice are given in the article. It is established that during transition from fraction, beset into alkaline media (12.0–8.5) to fraction beset into acid media (5.0–2.0) the decrease of the rheological indicators of caustobiolate humic substance is occurred. Rheological curves of the flow of the disperse of caustobiolate humic substances of the fraction 1 and 2 are characterized for strong fossil structures, disperses of humic substances of the fraction 3 is for less strong coagulation structures. Less structured are humic substances of brown coal so that their use is preferable for the regulation of the structure and rheological peculiarities of drilling solutions.


2021 ◽  
Author(s):  
Shahin Khosrov Akhundov ◽  
Mushfig Farhad Tagiyev ◽  
Arastun Ismail Khuduzade ◽  
Natig Namig Aliyev

Abstract Meso-Cenozoic sedimentary cover in the Middle Kura depression located between the Greater and Lesser Caucasus mountain structures contains numerous oil accumulations. According to studies in the Cretaceous and Paleogene strata, sedimentary organic matter is of mixed clastic-marine origin. Moderate amounts of organic matter have been recorded in the Eocene sediments (on average 0.70%), in the Upper and Lower Cretaceous average values made up 0.39% и 0.42%, respectively. Analysis of bitumoid composition suggests that in a number of areas bitumoids have experienced a widespread movement across the sedimentary strata. The results of measurements on isolated samples indicate that the Cretaceous strata have only advanced to the initial hard-coal stage of organic transformation (0.48-0.55%Ro). On vitrinite reflectance data the Eocene deposits in studied areas of the Middle Kura depression have reached initial (brown-coal) stage of catagenetic transformation (±0.48Ro%; est. paleotemperature of 85°C). Nonetheless, analysis of formation conditions of commercial HC accumulations found earlier in the Eocene strata allows considering them the most prospective in the Middle Kura depression.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 466
Author(s):  
Kaixin Chang ◽  
Qianjin Zhu ◽  
Liyan Qi ◽  
Mingwei Guo ◽  
Woming Gao ◽  
...  

Nitrogen-doped carbon quantum dots (N-CQDs) were synthesized in a one-step hydrothermal technique utilizing L-lactic acid as that of the source of carbon and ethylenediamine as that of the source of nitrogen, and were characterized using dynamic light scattering, X-ray photoelectron spectroscopy ultraviolet-visible spectrum, Fourier-transformed infrared spectrum, high-resolution transmission electron microscopy, and fluorescence spectrum. The generated N-CQDs have a spherical structure and overall diameters ranging from 1–4 nm, and their surface comprises specific functional groups such as amino, carboxyl, and hydroxyl, resulting in greater water solubility and fluorescence. The quantum yield of N-CQDs (being 46%) is significantly higher than that of the CQDs synthesized from other biomass in literatures. Its fluorescence intensity is dependent on the excitation wavelength, and N-CQDs release blue light at 365 nm under ultraviolet light. The pH values may impact the protonation of N-CQDs surface functional groups and lead to significant fluorescence quenching of N-CQDs. Therefore, the fluorescence intensity of N-CQDs is the highest at pH 7.0, but it decreases with pH as pH values being either more than or less than pH 7.0. The N-CQDs exhibit high sensitivity to Fe3+ ions, for Fe3+ ions would decrease the fluorescence intensity of N-CQDs by 99.6%, and the influence of Fe3+ ions on N-CQDs fluorescence quenching is slightly affected by other metal ions. Moreover, the fluorescence quenching efficiency of Fe3+ ions displays an obvious linear relationship to Fe3+ concentrations in a wide range of concentrations (up to 200 µM) and with a detection limit of 1.89 µM. Therefore, the generated N-CQDs may be utilized as a robust fluorescence sensor for detecting pH and Fe3+ ions.


Sign in / Sign up

Export Citation Format

Share Document