manifold mapping
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 11)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 13 (24) ◽  
pp. 4987
Author(s):  
Chengkai Tang ◽  
Chen Wang ◽  
Lingling Zhang ◽  
Yi Zhang ◽  
Houbing Song

Positioning information is the cornerstone of a new generation of electronic information technology applications represented by the Internet of Things and smart city. However, due to various environmental electromagnetic interference, building shielding, and other factors, the positioning source can fail. Cooperative positioning technology can realize the sharing of positioning information and make up for the invalid positioning source. When one node in the cooperative positioning network has error, the positioning stability of all nodes in the whole cooperative network will be significantly reduced, but the positioning probability information technology can effectively reduce the impact of mutation error. Based on this idea, this paper proposes an information-geometry-assisted distributed algorithm for probabilistic cooperative fusion positioning (IG-CP) of navigation information. The position information of different types of navigation sources is utilized to establish a probability density model, which effectively reduces the influence of a single position error on the whole cooperative position network. Combined with the nonlinear fitting characteristics of the information geometric manifold, mapping and fusion of the ranging information between cooperative nodes on the geometric manifold surface are conducted to achieve cooperative positioning, which can effectively improve the stability of the positioning results. The proposed algorithm is simulated and analyzed in terms of the node positioning error, ranging error, convergence speed, and distribution of the cooperative positioning network. The simulation results show that our proposed cooperative positioning algorithm can effectively improve the positioning stability and display better positioning performance.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Vishal Raul ◽  
Leifur Leifsson

PurposeThe purpose of this work is to investigate the similarity requirements for the application of multifidelity modeling (MFM) for the prediction of airfoil dynamic stall using computational fluid dynamics (CFD) simulations.Design/methodology/approachDynamic stall is modeled using the unsteady Reynolds-averaged Navier–Stokes equations and Menter's shear stress transport turbulence model. Multifidelity models are created by varying the spatial and temporal discretizations. The effectiveness of the MFM method depends on the similarity between the high- (HF) and low-fidelity (LF) models. Their similarity is tested by computing the prediction error with respect to the HF model evaluations. The proposed approach is demonstrated on three airfoil shapes under deep dynamic stall at a Mach number 0.1 and Reynolds number 135,000.FindingsThe results show that varying the trust-region (TR) radius (λ) significantly affects the prediction accuracy of the MFM. The HF and LF simulation models hold similarity within small (λ ≤ 0.12) to medium (0.12 ≤ λ ≤ 0.23) TR radii producing a prediction error less than 5%, whereas for large TR radii (0.23 ≤ λ ≤ 0.41), the similarity is strongly affected by the time discretization and minimally by the spatial discretization.Originality/valueThe findings of this work present new knowledge for the construction of accurate MFMs for dynamic stall performance prediction using LF model spatial- and temporal discretization setup and the TR radius size. The approach used in this work is general and can be used for other unsteady applications involving CFD-based MFM and optimization.


2021 ◽  
pp. 1-12
Author(s):  
D. Echeverría Ciaurri ◽  
G. A. Moreno Beltrán ◽  
J. Camacho Navarro ◽  
J. A. Prada Mejía

Summary Well-control management is nowadays frequently approached by means of mathematical optimization. However, in many practical situations the optimization algorithms used are still computationally expensive. In this paper, we present progressive optimization (PO), a simulator-nonintrusivefour-stage methodology to accelerate optimal search substantially in well-controlapplications. The first stage of PO comprises a global exploration of the search space using design of experiments (DOEs). Thereafter, in the second stage, a fast-to-evaluate proxy model is constructed with the points considered in the experimental design. This proxy is based on generalized barycentric coordinates (GBCs), a generalization of the concept of barycentric coordinates used within a triangle. GBCs can be especially suited to problems in which nonlinearities are not strong, as is the case often for well-control optimization. This fact is supported by the good performance in these types of optimization problems of techniques that rely strongly on linearity assumptions, such as trajectory piecewise linearization, a procedure that is not always applicable due to its simulator-intrusive nature. In the third stage, the precision of the proxy model is iteratively improved and the enhanced surrogate model is reoptimized by means of manifold mapping (MM), a method that combines models with different levels of accuracy. MM has solid theoretical foundations and leads to efficient optimization schemes in multiple engineering disciplines. The final and fourth stage aims at additional improvement, resorting to direct optimization of the best solution from the previous stages. Nonlinear (operational) constraints are handled in PO with the filter method. The optimal search may be finalized earlier than at the fourth stage whenever the solution obtained is of satisfactory quality. PO is tested on two waterflooding problems built upon a synthetic model previously studied in well-control optimization literature. In these problems, which have 120 and 40 well controls and include nonlinear constraints, we observe for PO reductions in computational cost, for solutions of comparable quality, of approximately 30% and 50% with respect to Hooke-Jeeves direct search (HJDS), which, in turn, outperforms particle swarm optimization (PSO). HJDS and PSO are simulator-nonintrusive algorithms that usually perform well in optimization for oilfield operations. The novel concepts of GBC and MM within the framework of the PO paradigm can be extremely helpful for practitioners to efficiently deal with optimized well-control management. Savings of 50% in computing cost may be translated in practice into days of computations for just a single field and optimization run.


2021 ◽  
pp. 1-18
Author(s):  
Jethro Nagawkar ◽  
Jie Ren ◽  
Xiaosong Du ◽  
Leifur Leifsson ◽  
Slawomir Koziel

Sign in / Sign up

Export Citation Format

Share Document