frictional slip
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 21)

H-INDEX

21
(FIVE YEARS 2)

2022 ◽  
Vol 14 (2) ◽  
pp. 306
Author(s):  
Lei Zhao ◽  
Chunyan Qu ◽  
Dezheng Zhao ◽  
Xinjian Shan ◽  
Han Chen ◽  
...  

We use ALOS-2 and Sentinel-1 data spanning 2015-2020 to obtain the post-seismic deformation of the 2015 Mw 7.8 Nepal earthquake. ALOS-2 observations reveal that the post-seismic deformation was mainly distributed in four areas. A large-scale uplift deformation occurred in the northern subsidence area of the co-seismic deformation field, with a maximum uplift of ~80mm within 4.5 yr after the mainshock. While in the southern coseismic uplift area, the direction of the post-seismic deformation is generally opposite to the co-seismic deformation. Additionally, two notable deformation areas are located in the region around 29°N, and near the MFT, respectively. Sentinel-1 observations reveal post-seismic uplift deformation on the north side of the co-seismic deformation field with an average rate of ~20 mm/yr in line-of-stght. The kinematic afterslip constrained by InSAR data shows that the frictional slip is distributed in both updip and downdip areas. The maximum cumulative afterslip is 0.35 m in downdip areas, and 0.2 m in the updip areas, constrained by the ALOS measurements. The stress-driven afterslip model shows that the afterslip is distributed in the downdip area with a maximum slip of 0.3m during the first year after the earthquake. Within the 4.5 years after the mainshock, the estimated moment released by afterslip is ~1.5174 × 1020 Nm,about 21.2% of that released by the main earthquake.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yue Li ◽  
Chongming Gao ◽  
Chong Li ◽  
Qian Li

As an important support member in the structural system of coastal bridges, the frictional slip and the rubber aging of laminated rubber bearings will affect the service safety of the overall structure in earthquakes. In order to investigate the mechanical properties aging law of the rubber bearings considering frictional slip in the coastal bridges, a frictional slip experiment was carried out on the laminated rubber bearings. Moreover, the influence of rubber aging on the mechanical properties of the bearings with various shape coefficients was analyzed by the finite element method during the 100 years of service life of bridges. The results indicate that (1) the horizontal and vertical stiffness of the bearing increase linearly with the aging time of the rubber. The amplification of the bearing stiffness also grows with the shape coefficient of the bearing. (2) The frictional slip initiation displacement of the bearing grows with the rubber aging time. Furthermore, the larger the shape coefficient of the bearing is, the more the frictional slip initiation displacement of the bearing increases. (3) With the increase of the aging time, the equivalent viscous damping ratio of the bearing continues to increase and more energy is consumed by frictional slip. For the bearing with the shape coefficient of 16.38, the equivalent viscous damping ratio at 100 years of rubber aging time is 1.17 times higher than that of the initial state of the bearing, and 33.21% more energy is consumed through frictional slip. Given that the marine environment accelerates rubber aging and changes the mechanical properties, the effects of the frictional slip and rubber aging properties of the laminated rubber bearings on the seismic dynamic response of bridges should be considered in the seismic design of coastal bridges.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tom Vincent-Dospital ◽  
Alain Steyer ◽  
François Renard ◽  
Renaud Toussaint

The surface morphology of faults controls the spatial anisotropy of their frictional properties and hence their mechanical stability. Such anisotropy is only rarely studied in seismology models of fault slip, although it might be paramount to understand the seismic rupture in particular areas, notably where slip occurs in a direction different from that of the main striations of the fault. To quantify how the anisotropy of fault surfaces affects the friction coefficient during sliding, we sheared synthetic fault planes made of plaster of Paris. These fault planes were produced by 3D-printing real striated fault surfaces whose 3D roughness was measured in the field at spatial scales from millimeters to meters. Here, we show how the 3D-printing technology can help for the study of frictional slip. The results show that fault anisotropy controls the coefficient of static friction, with μS//, the friction coefficient along the striations being three to four times smaller than μS⊥, the friction coefficient along the orientation perpendicular to the striations. This is true both at the meter and the millimeter scales. The anisotropy in friction and the average coefficient of static friction are also shown to decrease with the normal stress applied to the faults, as a result of the increased surface wear under increased loading.


2021 ◽  
Author(s):  
Takeshi Miyamoto ◽  
Tetsuro Hirono ◽  
Akari Fuke ◽  
Kiyokazu Oohashi ◽  
Satoshi Yukawa

<p>Many experimental works have previously performed to understand frictional properties of various kinds of rocks and minerals by using friction apparatus at various orders of sliding velocities ranging from nm/s to m/s together with microscopic observation. However, friction experiments at wide range of velocities on a single type of rock or mineral have been rarely reported. Here we conducted friction experiments using powdered pyroclastic samples at velocities ranging from 0.0002 m/s to 1 m/s, 1.5–3.0 MPa normal stress, 10 m slip distance and dry and wet conditions. We also performed numerical simulation by using discrete element method (DEM) that focused on the changes of distances to adjacent particles (referred as CAP) and forces particles experiencing during frictional slip. At higher velocities, the sample showed relatively drastic decrease of friction coefficient and boundary-parallel Y shears. In contrast, R1 shears, oblique to shear direction, were observed in the samples at lower velocities. Numerical simulations at higher velocities of 0.1 and 1 m/s resulted in slip weakening and development of larger CAP lines parallel to boundary. At lower velocities, larger forces and CAPs were concentrated locally. These results could imply that the development of composite planar fabrics has a dependency on slip velocity. Now we are investigating the relationship using synthetic quartz powders, and will show the preliminary results of re-experiments, numerical simulations, and microscopic observations.</p>


2021 ◽  
Author(s):  
Ranjith Kunnath

<p>A model that explains the anomalies in the Love wave dispersion in the earth is presented. Conventionally, welded contact between the crust and the upper mantle is assumed, leading to Love wave generation when the earth is excited. However, the observations of SH wave dispersion at seismic frequencies is at variance with this model, at least for some crustal plates (Ekström, 2011). When frictional slip occurs at the crust-upper mantle interface, a new type of interfacial elastic wave called the antiplane slip wave can occur (Ranjith, 2017). It is shown that the antiplane slip waves can explain the observed anomalies in the Love wave dispersion. </p>


Science ◽  
2020 ◽  
Vol 370 (6516) ◽  
pp. 605-608
Author(s):  
Xiaohua Xu ◽  
David T. Sandwell ◽  
Lauren A. Ward ◽  
Chris W. D. Milliner ◽  
Bridget R. Smith-Konter ◽  
...  

Contemporary earthquake hazard models hinge on an understanding of how strain is distributed in the crust and the ability to precisely detect millimeter-scale deformation over broad regions of active faulting. Satellite radar observations revealed hundreds of previously unmapped linear strain concentrations (or fractures) surrounding the 2019 Ridgecrest earthquake sequence. We documented and analyzed displacements and widths of 169 of these fractures. Although most fractures are displaced in the direction of the prevailing tectonic stress (prograde), a large number of them are displaced in the opposite (retrograde) direction. We developed a model to explain the existence and behavior of these displacements. A major implication is that much of the prograde tectonic strain is accommodated by frictional slip on many preexisting faults.


Sign in / Sign up

Export Citation Format

Share Document