muscle connectivity
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 6)

H-INDEX

5
(FIVE YEARS 3)

2020 ◽  
Author(s):  
Runfeng Tian ◽  
Julius P.A. Dewald ◽  
Yuan Yang

AbstractA hallmark impairment in a hemiparetic stroke is a loss of independent joint control resulting in abnormal co-activation of shoulder abductor and elbow flexor muscles in their paretic arm, clinically known as the flexion synergy. The flexion synergy appears while generating shoulder abduction (SABD) torques as lifting the paretic arm. This likely be caused by an increased reliance on contralesional indirect motor pathways following damage to direct corticospinal projections. The assessment of functional connectivity between brain and muscle signals, i.e., brain-muscle connectivity (BMC), may provide insight into such changes to the usage of motor pathways. Our previous model simulation shows that multi-synaptic connections along the indirect motor pathway can generate nonlinear connectivity. We hypothesize that increased usage of indirect motor pathways (as increasing SABD load) will lead to an increase of nonlinear BMC. To test this hypothesis, we measured brain activity, muscle activity from shoulder abductors when stroke participants generate 20% and 40% of maximum SABD torque with their paretic arm. We computed both linear and nonlinear BMC between EEG and EMG. We found dominant nonlinear BMC at contralesional/ipsilateral hemisphere for stroke, whose magnitude increased with the SABD load. These results supported our hypothesis and indicated that nonlinear BMC could provide a quantitative indicator for determining the usage of indirect motor pathways following a hemiparetic stroke.


Effective segmentation of electromyography (EMG) burst that synchronizes with electroencephalography (EEG) for long-duration recording is important steps to better understand the quantification of brain-muscle connectivity in periodic motoric activities. The work proposes an alternative automatic EMG segmentation scheme consists of four main steps, i.e. denoising of EMG burst signal using discrete wavelet transform, enveloping signal using time-windows averaging of RMS amplitude, an adaptive threshold to detect start/end burst envelope with accommodation of muscle contraction characteristic and the final step is conversion enveloping signal to binary segmentation signal.The proposed scheme is evaluated to detect contraction period/duration of EMG for the subject under repetitive holding and releasing grasp using a physiotherapy device. During exercise, the bio-amplifier board is customized to acquire simultaneous EEG and EMG from the region of flexor digitorum superficialis (FDS) of muscle and cortical motor of the brain, with total 284 EMG burst that counting by manual segmentation. The automatic segmentation can detect the total EMG burst by 6.25% error of false burst detection.The usefulness of proposed scheme is also tested to association analysis according to the power of EMG burst and the power of mu-wave of EEG recorded on the motor cortex. The changing trend of the power of mu-wave associated with muscle relaxation, muscle contraction strength and the synchronization level on the motor cortex during exercise are analyzed with integrated information that is relevant with biofeedback concept. The results demonstrate that proposed scheme has potential to be an effective method for the evaluation of biofeedback rehabilitation exercise.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Xiaotian Zhang ◽  
Fan Kiat Chan ◽  
Tejaswin Parthasarathy ◽  
Mattia Gazzola

Abstract Natural creatures, from fish and cephalopods to snakes and birds, combine neural control, sensory feedback and compliant mechanics to effectively operate across dynamic, uncertain environments. In order to facilitate the understanding of the biophysical mechanisms at play and to streamline their potential use in engineering applications, we present here a versatile numerical approach to the simulation of musculoskeletal architectures. It relies on the assembly of heterogenous, active and passive Cosserat rods into dynamic structures that model bones, tendons, ligaments, fibers and muscle connectivity. We demonstrate its utility in a range of problems involving biological and soft robotic scenarios across scales and environments: from the engineering of millimeter-long bio-hybrid robots to the synthesis and reconstruction of complex musculoskeletal systems. The versatility of this methodology offers a framework to aid forward and inverse bioengineering designs as well as fundamental discovery in the functioning of living organisms.


Author(s):  
Antonino Naro ◽  
Simona Portaro ◽  
Demetrio Milardi ◽  
Luana Billeri ◽  
Antonino Leo ◽  
...  

Abstract Background A proper rehabilitation program targeting gait is mandatory to maintain the quality of life of patients with Myotonic dystrophy type 1 (DM1). Assuming that gait and balance impairment simply depend on the degree of muscle weakness is potentially misleading. In fact, the involvement of the Central Nervous System (CNS) in DM1 pathophysiology calls into account the deterioration of muscle coordination in gait impairment. Our study aimed at demonstrating the presence and role of muscle connectivity deterioration in patients with DM1 by a CNS perspective by investigating signal synergies using a time-frequency spectral coherence and multivariate analyses on lower limb muscles while walking upright. Further, we sought at determining whether muscle networks were abnormal secondarily to the muscle impairment or primarily to CNS damage (as DM1 is a multi–system disorder also involving the CNS). In other words, muscle network deterioration may depend on a weakening in signal synergies (that express the neural drive to muscles deduced from surface electromyography data). Methods Such an innovative approach to estimate muscle networks and signal synergies was carried out in seven patients with DM1 and ten healthy controls (HC). Results Patients with DM1 showed a commingling of low and high frequencies among muscle at both within– and between–limbs level, a weak direct neural coupling concerning inter–limb coordination, a modest network segregation, high integrative network properties, and an impoverishment in the available signal synergies, as compared to HCs. These network abnormalities were independent from muscle weakness and myotonia. Conclusions Our results suggest that gait impairment in patients with DM1 depends also on a muscle network deterioration that is secondary to signal synergy deterioration (related to CNS impairment). This suggests that muscle network deterioration may be a primary trait of DM1 rather than a maladaptive mechanism to muscle degeneration. This information may be useful concerning the implementation of proper rehabilitative strategies in patients with DM1. It will be indeed necessary not only addressing muscle weakness but also gait-related muscle connectivity to improve functional ambulation in such patients.


2019 ◽  
pp. 1800307 ◽  
Author(s):  
Carolina Barcellos Machado ◽  
Perrine Pluchon ◽  
Peter Harley ◽  
Mark Rigby ◽  
Victoria Gonzalez Sabater ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 387 ◽  
Author(s):  
Rüdiger Rudolf ◽  
Muzamil Majid Khan ◽  
Veit Witzemann

By mediating voluntary muscle movement, vertebrate neuromuscular junctions (NMJ) play an extraordinarily important role in physiology. While the significance of the nerve-muscle connectivity was already conceived almost 2000 years back, the precise cell and molecular biology of the NMJ have been revealed in a series of fascinating research activities that started around 180 years ago and that continues. In all this time, NMJ research has led to fundamentally new concepts of cell biology, and has triggered groundbreaking advancements in technologies. This review tries to sketch major lines of thought and concepts on NMJ in their historical perspective, in particular with respect to anatomy, function, and molecular components. Furthermore, along these lines, it emphasizes the mutual benefit between science and technology, where one drives the other. Finally, we speculate on potential major future directions for studies on NMJ in these fields.


NeuroImage ◽  
2017 ◽  
Vol 159 ◽  
pp. 403-416 ◽  
Author(s):  
Fiorenzo Artoni ◽  
Chiara Fanciullacci ◽  
Federica Bertolucci ◽  
Alessandro Panarese ◽  
Scott Makeig ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document